No Arabic abstract
Skin contraction is an important biophysical process that takes place during and after the recovery of deep tissue injury. This process is mainly caused by fibroblasts (skin cells) and myofibroblasts (differentiated fibroblasts) that exert pulling forces on the surrounding extracellular matrix (ECM). Modelling is done in multiple scales: agent-based modelling on the microscale and continuum-based modelling on the macroscale. In this manuscript, we present some results from our study of the connection between these scales. For the one-dimensional case, we managed to rigorously establish the link between the two modelling approaches for both closed-form solutions and finite-element approximations. For the multidimensional case, we computationally evidence the connection between the agent-based and continuum-based modelling approaches.
In this paper, we develop a space-time upscaling framework that can be used for many challenging porous media applications without scale separation and high contrast. Our main focus is on nonlinear differential equations with multiscale coefficients. The framework is built on nonlinear nonlocal multi-continuum upscaling concept and significantly extends the results in the proceeding paper. Our approach starts with a coarse space-time partition and identifies test functions for each partition, which plays a role of multi-continua. The test functions are defined via optimization and play a crucial role in nonlinear upscaling. In the second stage, we solve nonlinear local problems in oversampled regions with some constraints defined via test functions. These local solutions define a nonlinear map from macroscopic variables determined with the help of test functions to the fine-grid fields. This map can be thought as a downscaled map from macroscopic variables to the fine-grid solution. In the final stage, we seek macroscopic variables in the entire domain such that the downscaled field solves the global problem in a weak sense defined using the test functions. We present an analysis of our approach for an example nonlinear problem. Our unified framework plays an important role in designing various upscaled methods. Because local problems are directly related to the fine-grid problems, it simplifies the process of finding local solutions with appropriate constraints. Using machine learning (ML), we identify the complex map from macroscopic variables to fine-grid solution. We present numerical results for several porous media applications, including two-phase flow and transport.
In this paper we present numerical simulations of a macroscopic vision-based model [1] derived from microscopic situation rules described in [2]. This model describes an approach to collision avoidance between pedestrians by taking decisions of turning or slowing down based on basic interaction rules, where the dangerousness level of an interaction with another pedestrian is measured in terms of the derivative of the bearing angle and of the time-to-interaction. A meshfree particle method is used to solve the equations of the model. Several numerical cases are considered to compare this model with models established in the field, for example, social force model coupled to an Eikonal equation [3]. Particular emphasis is put on the comparison of evacuation and computation times. References 1. Degond P., Appert-Rolland C., Pettere J., Theraulaz G., Vision-based macroscopic pedestrian models, Kinetic and Related models, AIMs 6(4), 809-839 (2013) 2. Ondrej J., Pettere J., Olivier A.H., Donikian S., A synthetic-vision based steering approach for crowd simulation, ACM Transactions on Graphics, 29(4), Article 123 (2010) 3. Etikyala R., Gottlich S., Klar A., Tiwari S., Particle methods for pedestrian flow models: From microscopic to nonlocal continuum models, Mathematical Models and Methods in Applied Sciences, 20(12), 2503-2523 (2014)
Reduced model spaces, such as reduced basis and polynomial chaos, are linear spaces $V_n$ of finite dimension $n$ which are designed for the efficient approximation of families parametrized PDEs in a Hilbert space $V$. The manifold $mathcal{M}$ that gathers the solutions of the PDE for all admissible parameter values is globally approximated by the space $V_n$ with some controlled accuracy $epsilon_n$, which is typically much smaller than when using standard approximation spaces of the same dimension such as finite elements. Reduced model spaces have also been proposed in [13] as a vehicle to design a simple linear recovery algorithm of the state $uinmathcal{M}$ corresponding to a particular solution when the values of parameters are unknown but a set of data is given by $m$ linear measurements of the state. The measurements are of the form $ell_j(u)$, $j=1,dots,m$, where the $ell_j$ are linear functionals on $V$. The analysis of this approach in [2] shows that the recovery error is bounded by $mu_nepsilon_n$, where $mu_n=mu(V_n,W)$ is the inverse of an inf-sup constant that describe the angle between $V_n$ and the space $W$ spanned by the Riesz representers of $(ell_1,dots,ell_m)$. A reduced model space which is efficient for approximation might thus be ineffective for recovery if $mu_n$ is large or infinite. In this paper, we discuss the existence and construction of an optimal reduced model space for this recovery method, and we extend our search to affine spaces. Our basic observation is that this problem is equivalent to the search of an optimal affine algorithm for the recovery of $mathcal{M}$ in the worst case error sense. This allows us to perform our search by a convex optimization procedure. Numerical tests illustrate that the reduced model spaces constructed from our approach perform better than the classical reduced basis spaces.
The Kolmogorov $n$-width of the solution manifolds of transport-dominated problems can decay slowly. As a result, it can be challenging to design efficient and accurate reduced order models (ROMs) for such problems. To address this issue, we propose a new learning-based projection method to construct nonlinear adaptive ROMs for transport problems. The construction follows the offline-online decomposition. In the offline stage, we train a neural network to construct adaptive reduced basis dependent on time and model parameters. In the online stage, we project the solution to the learned reduced manifold. Inheriting the merits from both deep learning and the projection method, the proposed method is more efficient than the conventional linear projection-based methods, and may reduce the generalization error of a solely learning-based ROM. Unlike some learning-based projection methods, the proposed method does not need to take derivatives of the neural network in the online stage.
In this work, by introducing the seismic impedance tensor we propose a new Rayleigh wave dispersion function in a homogeneous and layered medium of the Earth, which provides an efficient way to compute the dispersion curve -- a relation between the frequencies and the phase velocities. With this newly established forward model, based on the Mixture Density Networks (MDN) we develop a machine learning based inversion approach, named as FW-MDN, for the problem of estimating the S-wave velocity from the dispersion curves. The method FW-MDN deals with the non-uniqueness issue encountered in studies that invert dispersion curves for crust and upper mantle models and attains a satisfactory performance on the dataset with various noise structure. Numerical simulations are performed to show that the FW-MDN possesses the characteristics of easy calculation, efficient computation, and high precision for the model characterization.