Do you want to publish a course? Click here

Space-Time Nonlinear Upscaling Framework Using Non-local Multi-continuum Approach

113   0   0.0 ( 0 )
 Added by Wing Tat Leung
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we develop a space-time upscaling framework that can be used for many challenging porous media applications without scale separation and high contrast. Our main focus is on nonlinear differential equations with multiscale coefficients. The framework is built on nonlinear nonlocal multi-continuum upscaling concept and significantly extends the results in the proceeding paper. Our approach starts with a coarse space-time partition and identifies test functions for each partition, which plays a role of multi-continua. The test functions are defined via optimization and play a crucial role in nonlinear upscaling. In the second stage, we solve nonlinear local problems in oversampled regions with some constraints defined via test functions. These local solutions define a nonlinear map from macroscopic variables determined with the help of test functions to the fine-grid fields. This map can be thought as a downscaled map from macroscopic variables to the fine-grid solution. In the final stage, we seek macroscopic variables in the entire domain such that the downscaled field solves the global problem in a weak sense defined using the test functions. We present an analysis of our approach for an example nonlinear problem. Our unified framework plays an important role in designing various upscaled methods. Because local problems are directly related to the fine-grid problems, it simplifies the process of finding local solutions with appropriate constraints. Using machine learning (ML), we identify the complex map from macroscopic variables to fine-grid solution. We present numerical results for several porous media applications, including two-phase flow and transport.



rate research

Read More

In this paper, we consider a parabolic problem with time-dependent heterogeneous coefficients. Many applied problems have coupled space and time heterogeneities. Their homogenization or upscaling requires cell problems that are formulated in space-time representative volumes for problems with scale separation. In problems without scale separation, local problems include multiple macroscopic variables and oversampled local problems, where these macroscopic parameters are computed. These approaches, called Non-local multi-continua, are proposed for problems with complex spatial heterogeneities in a number of previous papers. In this paper, we extend this approach for space-time heterogeneities, by identifying macroscopic parameters in space-time regions. Our proposed method space-time Non-local multi-continua (space-time NLMC) is an efficient numerical solver to deal with time-dependent heterogeneous coefficients. It provides a flexible and systematic way to construct multiscale basis functions to approximate the solution. These multiscale basis functions are constructed by solving a local energy minimization problems in the oversampled space-time regions such that these multiscale basis functions decay exponentially outside the oversampled domain. Unlike the classical time-stepping methods combined with full-discretization technique, our space-time NLMC efficiently constructs the multiscale basis functions in a space-time domain and can provide a computational savings compared to space-only approaches as we discuss in the paper. We present two numerical experiments, which show that the proposed approach can provide a good accuracy.
In this paper, we discuss multiscale methods for nonlinear problems. The main idea of these approaches is to use local constraints and solve problems in oversampled regions for constructing macroscopic equations. These techniques are intended for problems without scale separation and high contrast, which often occur in applications. For linear problems, the local solutions with constraints are used as basis functions. This technique is called Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM). GMsFEM identifies macroscopic quantities based on rigorous analysis. In corresponding upscaling methods, the multiscale basis functions are selected such that the degrees of freedom have physical meanings, such as averages of the solution on each continuum. This paper extends the linear concepts to nonlinear problems, where the local problems are nonlinear. The main concept consists of: (1) identifying macroscopic quantities; (2) constructing appropriate oversampled local problems with coarse-grid constraints; (3) formulating macroscopic equations. We consider two types of approaches. In the first approach, the solutions of local problems are used as basis functions (in a linear fashion) to solve nonlinear problems. This approach is simple to implement; however, it lacks the nonlinear interpolation, which we present in our second approach. In this approach, the local solutions are used as a nonlinear forward map from local averages (constraints) of the solution in oversampling region. This local fine-grid solution is further used to formulate the coarse-grid problem. Both approaches are discussed on several examples and applied to single-phase and two-phase flow problems, which are challenging because of convection-dominated nature of the concentration equation.
52 - Q. Peng , F. J. Vermolen 2021
Skin contraction is an important biophysical process that takes place during and after the recovery of deep tissue injury. This process is mainly caused by fibroblasts (skin cells) and myofibroblasts (differentiated fibroblasts) that exert pulling forces on the surrounding extracellular matrix (ECM). Modelling is done in multiple scales: agent-based modelling on the microscale and continuum-based modelling on the macroscale. In this manuscript, we present some results from our study of the connection between these scales. For the one-dimensional case, we managed to rigorously establish the link between the two modelling approaches for both closed-form solutions and finite-element approximations. For the multidimensional case, we computationally evidence the connection between the agent-based and continuum-based modelling approaches.
Differential algebraic Riccati equations are at the heart of many applications in control theory. They are time-depent, matrix-valued, and in particular nonlinear equations that require special methods for their solution. Low-rank methods have been used heavily computing a low-rank solution at every step of a time-discretization. We propose the use of an all-at-once space-time solution leading to a large nonlinear space-time problem for which we propose the use of a Newton-Kleinman iteration. Approximating the space-time problem in low-rank form requires fewer applications of the discretized differential operator and gives a low-rank approximation to the overall solution.
In this article, an advanced differential quadrature (DQ) approach is proposed for the high-dimensional multi-term time-space-fractional partial differential equations (TSFPDEs) on convex domains. Firstly, a family of high-order difference schemes is introduced to discretize the time-fractional derivative and a semi-discrete scheme for the considered problems is presented. We strictly prove its unconditional stability and error estimate. Further, we derive a class of DQ formulas to evaluate the fractional derivatives, which employs radial basis functions (RBFs) as test functions. Using these DQ formulas in spatial discretization, a fully discrete DQ scheme is then proposed. Our approach provides a flexible and high accurate alternative to solve the high-dimensional multi-term TSFPDEs on convex domains and its actual performance is illustrated by contrast to the other methods available in the open literature. The numerical results confirm the theoretical analysis and the capability of our proposed method finally.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا