No Arabic abstract
Transition-metal chalcogenides (TMCs) materials have attracted increasing interest both for fundamental research and industrial applications. Among all these materials, two-dimensional (2D) compounds with honeycomb-like structure possess exotic electronic structures. Here, we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111) and annealing. Few intrinsic defects are observed and studied by scanning tunneling microscopy, indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary. Then, the monolayer AgTe can serve as the template for the following growth of Te film. Meanwhile, some Te atoms are observed in the form of chains on the top of the bottom Te film. Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.
Tellurium (Te) films with monolayer and few-layer thickness are obtained by molecular beam epitaxy on a graphene/6H-SiC(0001) substrate and investigated by in situ scanning tunneling microscopy and spectroscopy (STM/STS). We reveal that the Te films are composed of parallel-arranged helical Te chains flat-lying on the graphene surface, exposing the (1x1) facet of (10-10) of the bulk crystal. The band gap of Te films increases monotonically with decreasing thickness, reaching ~0.92 eV for the monolayer Te. An explicit band bending at the edge between the monolayer Te and graphene substrate is visualized. With the thickness controlled in atomic scale, Te films show potential applications of in electronics and optoelectronics.
The evolution of titanyl-phthalocyanine (TiOPc) thin films on Ag(111) has been investigated using IRAS, SPA-LEED and STM. In the (sub)monolayer regime various phases are observed that can be assigned to a 2D gas, a commensurate and a point-on-line phase. In all three phases the non-planar TiOPc molecule is adsorbed on Ag(111) in an oxygen-up configuration with the molecular pi-conjugated backbone oriented parallel to the surface. The commensurate phase reveals a high packing density, containing two molecules at inequivalent adsorption sites within the unit cell. Both molecules assume different azimuthal orientations which is ascribed to preferred sites and azimuthal orientations with respect to the Ag(111) substrate and, to a lesser extent, to a minimization of repulsive Pauli interactions between adjacent molecules at short distances. At full saturation of the monolayer the latter interaction becomes dominant and the commensurate long range order is lost. DFT calculations have been used to study different adsorption geometries of TiOPc on Ag(111). The most stable configurations among those with pointing up oxygen atoms (bridge+, bridgex, topx) seem to correspond to those identified experimentally. The calculated dependence of the electronic structure and molecular dipole on the adsorption site and configuration is found to be rather small.
Atomically sharp epitaxial growth of Bi2Se3 films is achieved on Si (111) substrate with MBE (Molecular Beam Epitaxy). Two-step growth process is found to be a key to achieve interfacial-layer-free epitaxial Bi2Se3 films on Si substrates. With a single-step high temperature growth, second phase clusters are formed at an early stage. On the other hand, with low temperature growth, the film tends to be disordered even in the absence of a second phase. With a low temperature initial growth followed by a high temperature growth, second-phase-free atomically sharp interface is obtained between Bi2Se3 and Si substrate, as verified by RHEED (Reflection High Energy Electron Diffraction), TEM (Transmission Electron Microscopy) and XRD (X-Ray Diffraction). The lattice constant of Bi2Se3 is observed to relax to its bulk value during the first quintuple layer according to RHEED analysis, implying the absence of strain from the substrate. TEM shows a fully epitaxial structure of Bi2Se3 film down to the first quintuple layer without any second phase or an amorphous layer.
The effects of a step defect and a random array of point defects (such as vacancies or substitutional impurities) on the force of friction acting on a xenon monolayer film as it slides on a silver (111) substrate are studied by molecular dynamic simulations and compared with the results of lowest order perturbation theory in the substrate corrugation potential. For the case of a step, the magnitude and velocity dependence of the friction force are strongly dependent on the direction of sliding respect to the step and the corrugation strength. When the applied force F is perpendicular to the step, the film is pinned forF less than a critical force Fc. Motion of the film along the step, however, is not pinned. Fluctuations in the sliding velocity in time provide evidence of both stick-slip motion and thermally activated creep. Simulations done with a substrate containing a 5 percent concentration of random point defects for various directions of the applied force show that the film is pinned for the force below a critical value. The critical force, however, is still much lower than the effective inertial force exerted on the film by the oscillations of the substrate in experiments done with a quartz crystal microbalance (QCM). Lowest order perturbation theory in the substrate potential is shown to give results consistent with the simulations, and it is used to give a physical picture of what could be expected for real surfaces which contain many defects.
We report the epitaxial growth and the electrical properties, especially the metal-to-insulator transition (MIT), of vanadium dioxide (VO2) thin films synthesized on LSAT (111) ([LaAlO3]0.3[Sr2AlTaO6]0.7) substrates by pulsed laser deposition. X-ray diffraction studies show that the epitaxial relationship between the VO2 thin films and LSAT substrate is given as VO2(020)||LSAT(111) and VO2[001]||LSAT[11-2]. We observed a sharp four orders of magnitude change in the longitudinal resistance for the VO2 thin films around the transition temperature. We also measured distinct Raman spectra below and above the transition point indicating a concomitant structural transition between the insulator and metallic phases, in agreement with past investigations.