Do you want to publish a course? Click here

Epitaxial growth of topological insulator Bi2Se3 film on Si(111) with atomically sharp interface

149   0   0.0 ( 0 )
 Added by Seongshik Oh
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Atomically sharp epitaxial growth of Bi2Se3 films is achieved on Si (111) substrate with MBE (Molecular Beam Epitaxy). Two-step growth process is found to be a key to achieve interfacial-layer-free epitaxial Bi2Se3 films on Si substrates. With a single-step high temperature growth, second phase clusters are formed at an early stage. On the other hand, with low temperature growth, the film tends to be disordered even in the absence of a second phase. With a low temperature initial growth followed by a high temperature growth, second-phase-free atomically sharp interface is obtained between Bi2Se3 and Si substrate, as verified by RHEED (Reflection High Energy Electron Diffraction), TEM (Transmission Electron Microscopy) and XRD (X-Ray Diffraction). The lattice constant of Bi2Se3 is observed to relax to its bulk value during the first quintuple layer according to RHEED analysis, implying the absence of strain from the substrate. TEM shows a fully epitaxial structure of Bi2Se3 film down to the first quintuple layer without any second phase or an amorphous layer.



rate research

Read More

143 - Handong Li , Lei Gao , Hui Li 2012
The van der Waals epitaxy of single crystalline Bi2Se3 film was achieved on hydrogen passivated Si(111) (H:Si) substrate by physical vapor deposition. Valence band structures of Bi2Se3/H:Si heterojunction were investigated by X-ray Photoemission Spectroscopy and Ultraviolet Photoemission Spectroscopy. The measured Schottky barrier height at the Bi2Se3-H:Si interface was 0.31 eV. The findings pave the way for economically preparing heterojunctions and multilayers of layered compound families of topological insulators.
We report molecular beam epitaxial growth of a SnTe (111) layer on a CdTe template, fabricated by depositing it on a GaAs (111)A substrate, instead of BaF$_2$ which has been conventionally used as a substrate. By optimizing temperatures for the growth of both SnTe and CdTe layers, we could obtain SnTe layers of the single phase grown only in the (111) orientation and of much improved surface morphology from the viewpoint of the extension and the flatness of flat regions, compared to the layers grown on BaF$_2$. In this optimal growth condition, we have also achieved a low hole density of the order of 10$^{17}$cm$^{-3}$ at 4K, the lowest value ever reported for SnTe thin films without additional doping. In the magnetoresistance measurement on this optimized SnTe layer, we observe characteristic negative magneto-conductance which is attributed to the weak antilocalization effect of the two-dimensional transport in the topological surface state.
73 - Haoyu Dong , Le Lei , Shuya Xing 2021
Transition-metal chalcogenides (TMCs) materials have attracted increasing interest both for fundamental research and industrial applications. Among all these materials, two-dimensional (2D) compounds with honeycomb-like structure possess exotic electronic structures. Here, we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111) and annealing. Few intrinsic defects are observed and studied by scanning tunneling microscopy, indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary. Then, the monolayer AgTe can serve as the template for the following growth of Te film. Meanwhile, some Te atoms are observed in the form of chains on the top of the bottom Te film. Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.
High quality Bi2Te3 and Sb2Te3 topological insulators films were epitaxially grown on GaAs (111) substrate using solid source molecular beam epitaxy. Their growth and behavior on both vicinal and non-vicinal GaAs (111) substrates were investigated by reflection high-energy electron diffraction, atomic force microscopy, x-ray diffraction, and high resolution transmission electron microscopy. It is found that non-vicinal GaAs (111) substrate is better than a vicinal substrate to provide high quality Bi2Te3 and Sb2Te3 films. Hall and magnetoresistance measurements indicate that p type Sb2Te3 and n type Bi2Te3 topological insulator films can be directly grown on a GaAs (111) substrate, which may pave a way to fabricate topological insulator p-n junction on the same substrate, compatible with the fabrication process of present semiconductor optoelectronic devices.
We investigate the ultrafast transient absorption spectrum of Bi2Se3 topological insulator. Bi2Se3 single crystal is grown through conventional solid-state reaction routevia self-flux method. The structural properties have been studied in terms of high-resolution Powder X-ray Diffraction (PXRD). Detailed Rietveld analysis of PXRD of the crystal showed that sample is crystallized in the rhombohedral crystal structure with a space group of R-3m, and the lattice parameters are a=b=4.14A and c=28.7010A. Scanning Electron Microscopy (SEM) result shows perfectly crystalline structure with layered type morphology which evidenced from surface XRD. Energy Dispersive Spectroscopy (EDS) analysis determined quantitative amounts of the constituent atoms, found to be very close to their stoichiometric ratio. Further the fluence dependent nonlinear behaviour is studied by means of ultrafast transient absorption spectroscopy. The ultrafast spectroscopy also predicts the capability of this single crystal to generate Terahertz (THz) radiations (T-rays).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا