Do you want to publish a course? Click here

A full discretization of the rough fractional linear heat equation

116   0   0.0 ( 0 )
 Added by Aurelien Deya
 Publication date 2021
  fields
and research's language is English
 Authors Aurelien Deya




Ask ChatGPT about the research

We study a full discretization scheme for the stochastic linear heat equation begin{equation*}begin{cases}partial_t langlePsirangle = Delta langlePsirangle +dot{B}, , quad tin [0,1], xin mathbb{R}, langlePsirangle_0=0, ,end{cases}end{equation*} when $dot{B}$ is a very emph{rough space-time fractional noise}. The discretization procedure is divised into three steps: $(i)$ regularization of the noise through a mollifying-type approach; $(ii)$ discretization of the (smoothened) noise as a finite sum of Gaussian variables over rectangles in $[0,1]times mathbb{R}$; $(iii)$ discretization of the heat operator on the (non-compact) domain $[0,1]times mathbb{R}$, along the principles of Galerkin finite elements method. We establish the convergence of the resulting approximation to $langlePsirangle$, which, in such a specific rough framework, can only hold in a space of distributions. We also provide some partial simulations of the algorithm.



rate research

Read More

This paper studies the nonlinear one-dimensional stochastic heat equation driven by a Gaussian noise which is white in time and which has the covariance of a fractional Brownian motion with Hurst parameter 1/4textless{}Htextless{}1/2 in the space variable. The existence and uniqueness of the solution u are proved assuming the nonlinear coefficient is differentiable with a Lipschitz derivative and vanishes at 0. In the case of a multiplicative noise, that is the linear equation, we derive the Wiener chaos expansion of the solution and a Feynman-Kac formula for the moments of the solution. These results allow us to establish sharp lower and upper asymptotic bounds for the moments of the solution.
In this note we consider the parabolic Anderson model in one dimension with time-independent fractional noise $dot{W}$ in space. We consider the case $H<frac{1}{2}$ and get existence and uniqueness of solution. In order to find the quenched asymptotics for the solution we consider its Feynman-Kac representation and explore the asymptotics of the principal eigenvalue for a random operator of the form $frac{1}{2} Delta + dot{W}$.
We construct a $K$-rough path above either a space-time or a spatial fractional Brownian motion, in any space dimension $d$. This allows us to provide an interpretation and a unique solution for the corresponding parabolic Anderson model, understood in the renormalized sense. We also consider the case of a spatial fractional noise.
We introduce a time-implicit, finite-element based space-time discretization scheme for the backward stochastic heat equation, and for the forward-backward stochastic heat equation from stochastic optimal control, and prove strong rates of convergence. The fully discrete version of the forward-backward stochastic heat equation is then used within a gradient descent algorithm to approximately solve the linear-quadratic control problem for the stochastic heat equation driven by additive noise.
The fractional Poisson process (FPP) is a counting process with independent and identically distributed inter-event times following the Mittag-Leffler distribution. This process is very useful in several fields of applied and theoretical physics including models for anomalous diffusion. Contrary to the well-known Poisson process, the fractional Poisson process does not have stationary and independent increments. It is not a Levy process and it is not a Markov process. In this letter, we present formulae for its finite-dimensional distribution functions, fully characterizing the process. These exact analytical results are compared to Monte Carlo simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا