Do you want to publish a course? Click here

Strong Rates of Convergence for Space-Time Discretization of the Backward Stochastic Heat Equation, and of a Linear-Quadratic Control Problem for the Stochastic Heat Equation

109   0   0.0 ( 0 )
 Added by Yanqing Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce a time-implicit, finite-element based space-time discretization scheme for the backward stochastic heat equation, and for the forward-backward stochastic heat equation from stochastic optimal control, and prove strong rates of convergence. The fully discrete version of the forward-backward stochastic heat equation is then used within a gradient descent algorithm to approximately solve the linear-quadratic control problem for the stochastic heat equation driven by additive noise.



rate research

Read More

We propose a time-implicit, finite-element based space-time discretization of the necessary and sufficient optimality conditions for the stochastic linear-quadratic optimal control problem with the stochastic heat equation driven by linear noise of type $[X(t)+sigma(t)]dW(t)$, and prove optimal convergence w.r.t. both, space and time discretization parameters. In particular, we employ the stochastic Riccati equation as a proper analytical tool to handle the linear noise, and thus extend the applicability of the earlier work [16], where the error analysis was restricted to additive noise.
This paper introduces an ultra-weak space-time DPG method for the heat equation. We prove well-posedness of the variational formulation with broken test functions and verify quasi-optimality of a practical DPG scheme. Numerical experiments visualize beneficial properties of an adaptive and parabolically scaled mesh-refinement driven by the built-in error control of the DPG method.
100 - Madalina Deaconu 2016
The Initial-Boundary Value Problem for the heat equation is solved by using a new algorithm based on a random walk on heat balls. Even if it represents a sophisticated generalization of the Walk on Spheres (WOS) algorithm introduced to solve the Dirich-let problem for Laplaces equation, its implementation is rather easy. The definition of the random walk is based on a new mean value formula for the heat equation. The convergence results and numerical examples permit to emphasize the efficiency and accuracy of the algorithm.
95 - Jingrui Sun , Zhen Wu , Jie Xiong 2021
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state processes are present in the cost functional. Based on a Hilbert space method, necessary and sufficient conditions are derived for the solvability of the problem, and a general approach for constructing optimal controls is developed. The crucial step in this construction is to establish the solvability of a Riccati-type equation, which is accomplished under a fairly weak condition by investigating the connection with forward stochastic LQ optimal control problems.
We consider the stochastic heat equation with a multiplicative white noise forcing term under standard intermitency conditions. The main finding of this paper is that, under mild regularity hypotheses, the a.s.-boundedness of the solution $xmapsto u(t,,x)$ can be characterized generically by the decay rate, at $pminfty$, of the initial function $u_0$. More specifically, we prove that there are 3 generic boundedness regimes, depending on the numerical value of $Lambda:= lim_{|x|toinfty} |log u_0(x)|/(log|x|)^{2/3}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا