No Arabic abstract
Poor medication adherence presents serious economic and health problems including compromised treatment effectiveness, medical complications, and loss of billions of dollars in wasted medicine or procedures. Though various interventions have been proposed to address this problem, there is an urgent need to leverage light, smart, and minimally obtrusive technology such as smartwatches to develop user tools to improve medication use and adherence. In this study, we conducted several experiments on medication-taking activities, developed a smartwatch android application to collect the accelerometer hand gesture data from the smartwatch, and conveyed the data collected to a central cloud database. We developed neural networks, then trained the networks on the sensor data to recognize medication and non-medication gestures. With the proposed machine learning algorithm approach, this study was able to achieve average accuracy scores of 97% on the protocol-guided gesture data, and 95% on natural gesture data.
Medication adherence is a problem of widespread concern in clinical care. Poor adherence is a particular problem for patients with chronic diseases requiring long-term medication because poor adherence can result in less successful treatment outcomes and even preventable deaths. Existing methods to collect information about patient adherence are resource-intensive or do not successfully detect low-adherers with high accuracy. Acknowledging that health measures recorded at clinic visits are more reliably recorded than a patients adherence, we have developed an approach to infer medication adherence rates based on longitudinally recorded health measures that are likely impacted by time-varying adherence behaviors. Our framework permits the inclusion of baseline health characteristics and socio-demographic data. We employ a modular inferential approach. First, we fit a two-component model on a training set of patients who have detailed adherence data obtained from electronic medication monitoring. One model component predicts adherence behaviors only from baseline health and socio-demographic information, and the other predicts longitudinal health measures given the adherence and baseline health measures. Posterior draws of relevant model parameters are simulated from this model using Markov chain Monte Carlo methods. Second, we develop an approach to infer medication adherence from the time-varying health measures using a Sequential Monte Carlo algorithm applied to a new set of patients for whom no adherence data are available. We apply and evaluate the method on a cohort of hypertensive patients, using baseline health comorbidities, socio-demographic measures, and blood pressure measured over time to infer patients adherence to antihypertensive medication.
One of the most significant barriers to medication treatment is patients non-adherence to a prescribed medication regimen. The extent of the impact of poor adherence on resulting health measures is often unknown, and typical analyses ignore the time-varying nature of adherence. This paper develops a modeling framework for longitudinally recorded health measures modeled as a function of time-varying medication adherence or other time-varying covariates. Our framework, which relies on normal Bayesian dynamic linear models (DLMs), accounts for time-varying covariates such as adherence and non-dynamic covariates such as baseline health characteristics. Given the inefficiencies using standard inferential procedures for DLMs associated with infrequent and irregularly recorded response data, we develop an approach that relies on factoring the posterior density into a product of two terms; a marginal posterior density for the non-dynamic parameters, and a multivariate normal posterior density of the dynamic parameters conditional on the non-dynamic ones. This factorization leads to a two-stage process for inference in which the non-dynamic parameters can be inferred separately from the time-varying parameters. We demonstrate the application of this model to the time-varying effect of anti-hypertensive medication on blood pressure levels from a cohort of patients diagnosed with hypertension. Our model results are compared to ones in which adherence is incorporated through non-dynamic summaries.
Analyzing particle data plays an important role in many scientific applications such as fluid simulation, cosmology simulation and molecular dynamics. While there exist methods that can perform feature extraction and tracking for volumetric data, performing those tasks for particle data is more challenging because of the lack of explicit connectivity information. Although one may convert the particle data to volume first, this approach is at risk of incurring error and increasing the size of the data. In this paper, we take a deep learning approach to create feature representations for scientific particle data to assist feature extraction and tracking. We employ a deep learning model, which produces latent vectors to represent the relation between spatial locations and physical attributes in a local neighborhood. With the latent vectors, features can be extracted by clustering these vectors. To achieve fast feature tracking, the mean-shift tracking algorithm is applied in the feature space, which only requires inference of the latent vector for selected regions of interest. We validate our approach using two datasets and compare our method with other existing methods.
Recent progress in deep learning is revolutionizing the healthcare domain including providing solutions to medication recommendations, especially recommending medication combination for patients with complex health conditions. Existing approaches either do not customize based on patient health history, or ignore existing knowledge on drug-drug interactions (DDI) that might lead to adverse outcomes. To fill this gap, we propose the Graph Augmented Memory Networks (GAMENet), which integrates the drug-drug interactions knowledge graph by a memory module implemented as a graph convolutional networks, and models longitudinal patient records as the query. It is trained end-to-end to provide safe and personalized recommendation of medication combination. We demonstrate the effectiveness and safety of GAMENet by comparing with several state-of-the-art methods on real EHR data. GAMENet outperformed all baselines in all effectiveness measures, and also achieved 3.60% DDI rate reduction from existing EHR data.
Medication recommendation is an important healthcare application. It is commonly formulated as a temporal prediction task. Hence, most existing works only utilize longitudinal electronic health records (EHRs) from a small number of patients with multiple visits ignoring a large number of patients with a single visit (selection bias). Moreover, important hierarchical knowledge such as diagnosis hierarchy is not leveraged in the representation learning process. To address these challenges, we propose G-BERT, a new model to combine the power of Graph Neural Networks (GNNs) and BERT (Bidirectional Encoder Representations from Transformers) for medical code representation and medication recommendation. We use GNNs to represent the internal hierarchical structures of medical codes. Then we integrate the GNN representation into a transformer-based visit encoder and pre-train it on EHR data from patients only with a single visit. The pre-trained visit encoder and representation are then fine-tuned for downstream predictive tasks on longitudinal EHRs from patients with multiple visits. G-BERT is the first to bring the language model pre-training schema into the healthcare domain and it achieved state-of-the-art performance on the medication recommendation task.