Transport studies of Andreev bound states (ABSs) are complicated by the interplay of charging effects and superconductivity. Here, we compare transport approaches to ABS spectroscopy in a semiconductor-superconductor island to a charge-sensing approach based on an integrated radio-frequency single-electron transistor. Consistency of the methods demonstrates that fast, non-invasive charge sensing allows accurate quantitative measurement of ABSs while eluding some complexities of transport.
The superconducting proximity effect in semiconductor nanowires has recently enabled the study of new superconducting architectures, such as gate-tunable superconducting qubits and multiterminal Josephson junctions. As opposed to their metallic counterparts, the electron density in semiconductor nanosystems is tunable by external electrostatic gates providing a highly scalable and in-situ variation of the device properties. In addition, semiconductors with large $g$-factor and spin-orbit coupling have been shown to give rise to exotic phenomena in superconductivity, such as $varphi_0$ Josephson junctions and the emergence of Majorana bound states. Here, we report microwave spectroscopy measurements that directly reveal the presence of Andreev bound states (ABS) in ballistic semiconductor channels. We show that the measured ABS spectra are the result of transport channels with gate-tunable, high transmission probabilities up to $0.9$, which is required for gate-tunable Andreev qubits and beneficial for braiding schemes of Majorana states. For the first time, we detect excitations of a spin-split pair of ABS and observe symmetry-broken ABS, a direct consequence of the spin-orbit coupling in the semiconductor.
We study how the shape of a periodic magnetic field affects the presence of Majorana bound states (MBS) in a nanowire-superconductor system. Motivated by the field configurations that can be produced by an array of nanomagnets, we consider spiral fields with an elliptic cross-section and fields with two sinusoidal components. We show that MBS are robust to imperfect helical magnetic fields. In particular, if the amplitude of one component is tuned to the value determined by the superconducting order parameter in the wire, the MBS can exist even if the second component has a much smaller amplitude. We also explore the effect of the chemical potential on the phase diagram. Our analysis is both numerical and analytical, with good agreement between the two methods.
We study the surface Andreev bound states (SABSs) and quasiparticle tunneling spectroscopy of three-dimensional (3D) chiral superconductor by changing the surface (interface) misorientation angle of chiral superconductors. We obtain analytical formula of the energy dispersion of SABS for general pair potential when an original 4$times$4 BdG Hamiltonian can be reduced to be two 2$times$2 blocks. The resulting SABS for 3D chiral superconductors with pair potential given by $k_z(k_x + ik_y)^{ u}$ $({ u} = 1, 2)$ has a complicated energy dispersion due to the coexistence of both point and line nodes. We focus on the tunneling spectroscopy of this pairing in the presence of applied magnetic field which induces Doppler shift of quasiparticle spectra. By contrast to previous known Doppler effect in unconventional superconductors, zero bias conductance dip can change into zero bias conductance peak by external magnetic field. We also study SABSs and tunneling spectroscopy for possible pairing symmetries of UPt$_3$ . For this purpose, we extend a standard formula of tunneling conductance of unconventional superconductor junctions in order to treat spin-triplet non-unitary pairings. The magneto tunneling spectroscopy, i.e., tunneling spectroscopy in the presence of magnetic field, can serve as a guide to determine the pairing symmetry of this material.
The tunneling characteristics of planar junctions between a normal metal and a non-centrosymmetric superconductor like CePt3Si are examined. It is shown that the superconducting phase with mixed parity can give rise to characteristic zero-bias anomalies in certain junction directions. The origin of these zero-bias anomalies are Andreev bound states at the interface. The tunneling characteristics for different directions allow to test the structure of the parity-mixed pairing state.
Quasiparticle excitations can compromise the performance of superconducting devices, causing high frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we introduce a new physical system comprised of a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.
Deividas Sabonis
,David van Zanten
,Judith Suter
.
(2021)
.
"Comparing tunneling spectroscopy and charge sensing of Andreev bound states in a semiconductor-superconductor hybrid nanowire structure"
.
Charles Marcus
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا