Do you want to publish a course? Click here

Majorana bound states in nanowire-superconductor hybrid systems in periodic magnetic fields

94   0   0.0 ( 0 )
 Added by Viktoriia Kornich
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study how the shape of a periodic magnetic field affects the presence of Majorana bound states (MBS) in a nanowire-superconductor system. Motivated by the field configurations that can be produced by an array of nanomagnets, we consider spiral fields with an elliptic cross-section and fields with two sinusoidal components. We show that MBS are robust to imperfect helical magnetic fields. In particular, if the amplitude of one component is tuned to the value determined by the superconducting order parameter in the wire, the MBS can exist even if the second component has a much smaller amplitude. We also explore the effect of the chemical potential on the phase diagram. Our analysis is both numerical and analytical, with good agreement between the two methods.



rate research

Read More

570 - V. Mourik , K. Zuo , S. M. Frolov 2012
Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. We report electrical measurements on InSb nanowires contacted with one normal (Au) and one superconducting electrode (NbTiN). Gate voltages vary electron density and define a tunnel barrier between normal and superconducting contacts. In the presence of magnetic fields of order 100 mT we observe bound, mid-gap states at zero bias voltage. These bound states remain fixed to zero bias even when magnetic fields and gate voltages are changed over considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires coupled to superconductors.
In this minireview, we outline the recent experimental and theoretical progress in the creation, characterization and manipulation of Majorana bound states (MBSs) in semiconductor-superconductor (SC) hybrid structures. After an introductory overview of the broader field we specifically focus on four of our recent projects in this direction. We show that the emergence of Fano resonances in the differential conductance in a normal lead-Majorana nanowire-quantum dot setup can be exploited to determine if a single MBS is contacted by the normal lead and the quantum dot providing an experimental test of the non-locality of MBSs. In the second project, the tunnel-coupling to two MBSs in an $s$-wave SC-Majorana nanowire Josephson junction (JJ) leads to a finite contribution of the MBSs to the equilibrium Josephson current probing directly the local spin-singlet contribution of the Majorana pair. We then shift our focus from MBSs forming in nanowire systems to MBSs forming in topological JJs. In a single sheet of buckled silicene with proximity induced superconductivity two local electric fields can be used to tune the junction between a topologically trivial and topologically non-trivial regime. In a Corbino geometry topological Josephson junction two MBSs harbored in Josephson vortices can rotate along the JJ and, in the course of this, will be exchanged periodically in the phase difference of the JJ. The tunneling current in a metal tip coupled to the JJ is shown to exhibit signs of the anyonic braiding phase of two MBSs.
Transport studies of Andreev bound states (ABSs) are complicated by the interplay of charging effects and superconductivity. Here, we compare transport approaches to ABS spectroscopy in a semiconductor-superconductor island to a charge-sensing approach based on an integrated radio-frequency single-electron transistor. Consistency of the methods demonstrates that fast, non-invasive charge sensing allows accurate quantitative measurement of ABSs while eluding some complexities of transport.
We investigate hybrid structures based on a bilayer quantum spin Hall system in proximity to an s-wave superconductor as a platform to mimic time-reversal symmetric topological superconductors. In this bilayer setup, the induced pairing can be of intra- or inter-layer type, and domain walls of those different types of pairing potentials host Kramers partners (time-reversal conjugate pairs) of Majorana bound states. Interestingly, we discover that such topological interfaces providing Majorana bound states can also be achieved in an otherwise homogeneous system by a spatially dependent inter-layer gate voltage. This gate voltage causes the relative electron densities of the two layers to vary accordingly which suppresses the inter-layer pairing in regions with strong gate voltage. We identify particular transport signatures (zero-bias anomalies) in a five-terminal setup that are uniquely related to the presence of Kramers pairs of Majorana bound states.
113 - P. Yu , J. Chen , M. Gomanko 2020
Conductance at zero source-drain voltage bias in InSb nanowire/NbTiN superconductor devices exhibits peaks that are close to a quantized value of $2e^2/h$. The nearly quantized resonances evolve in the tunnel barrier strength, magnetic field and magnetic field orientation in a way consistent with Majorana zero modes. Our devices feature two tunnel probes on both ends of the nanowire separated by a 400 nm nanowire segment covered by the superconductor. We only find nearly quantized zero bias peaks localized to one end of the nanowire, while conductance dips are observed for the same parameters on the other end. This undermines the Majorana explanation as Majorana modes must come in pairs. We do identify states delocalized from end to end near zero magnetic field and at higher electron density, which is not in the basic Majorana regime. We lay out procedures for assessing the nonlocality of subgap wavefunctions and provide a classification of nanowire bound states based on their localization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا