Do you want to publish a course? Click here

Nanoindentation of single crystalline Mo: Atomistic defect nucleation and thermomechanical stability

64   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The mechanical responses of single crystalline Body-Centered Cubic (BCC) metals, such as molybdenum (Mo), outperform other metals at high temperatures, so much so that they are considered as excellent candidates for applications under extreme conditions, such as the divertor of fusion reactors. The excellent thermomechanical stability of molybdenum at high temperatures (400-1000$^{rm o}$C) has also been detected through nanoindentation, pointing towards connections to emergent local dislocation mechanisms related to defect nucleation. In this work, we carry out a computational study of the effects of high temperature on the mechanical deformation properties of single crystalline Mo under nanoindentation. Molecular dynamics (MD) simulations of spherical nanoindentation are performed at two indenter tip diameters and crystalline sample orientations [100], [110], and [111], for the temperature range of 10-1000K. We investigate how the increase of temperature influences the nanoindentation process, modifying dislocation densities, mechanisms, atomic displacements and also, hardness, in agreement with reported experimental measurements. Our results suggest that the characteristic formation and high-temperature stability of [001] dislocation junctions in Mo during nanoindentation, in contrast to other BCC metals, may be the cause of the persistent thermomechanical stability of Mo.



rate research

Read More

Superconductivity in group IV semiconductors is desired for hybrid devices combining both semiconducting and superconducting properties. Following boron doped diamond and Si, superconductivity has been observed in gallium doped Ge, however the obtained specimen is in polycrystalline form [Herrmannsdorfer et al., Phys. Rev. Lett. 102, 217003 (2009)]. Here, we present superconducting single-crystalline Ge hyperdoped with gallium or aluminium by ion implantation and rear-side flash lamp annealing. The maximum concentration of Al and Ga incorporated into substitutional positions in Ge is eight times higher than the equilibrium solid solubility. This corresponds to a hole concentration above 10^21 cm-3. Using density functional theory in the local density approximation and pseudopotential plane-wave approach, we show that the superconductivity in p-type Ge is phonon-mediated. According to the ab initio calculations the critical superconducting temperature for Al- and Ga-doped Ge is in the range of 0.45 K for 6.25 at.% of dopant concentration being in a qualitative agreement with experimentally obtained values.
Molecular dynamics simulations are performed to investigate the role of a coherent {Sigma}3 (111) twin boundary on the plastic deformation behavior of Cu nanopillars. Our work reveals that the mechanical response of pillars with and without the twin boundary is decisively driven by the characteristics of initial dislocation sources. In the condition of comparably large pillar size and abundant initial mobile dislocations, overall yield and flow stresses are controlled by the longest, available mobile dislocation. An inverse correlation of the yield and flow stresses with the length of the longest dislocation is established, and its extrapolation agrees well with experimental yield stress data. The experimentally reported subtle differences in yield and flow stresses between pillars with and without the twin boundary are thus likely related to the maximum lengths of the mobile dislocations. In the condition of comparably small pillar size, for which a reduction of mobile dislocations during heat treatment and mechanical loading occurs, the mechanical response of pillars with and without the twin boundary can be clearly distinguished. Dislocation starvation during deformation is more clearly present in pillars without the twin boundary than in pillars with the twin boundary because the twin boundary acts as a pinning surface for the dislocation network.
A boost in the development of flexible and wearable electronics facilitates the design of new materials to be applied as transparent conducting films (TCFs). Although single-walled carbon nanotube (SWCNT) films are the most promising candidates for flexible TCFs, they still do not meet optoelectronic requirements demanded their successful industrial integration. In this study, we proposed and thoroughly investigated a new approach that comprises simultaneous bilateral (outer and inner surfaces) SWCNT doping after their opening by thermal treatment at 400 C under an ambient air atmosphere. Doping by a chloroauric acid (HAuCl$_{4}$) ethanol solution allowed us to achieve the record value of sheet resistance of 31 $pm$ 4 $Omega$/sq at a transmittance of 90% in the middle of visible spectra (550 nm). The strong p-doping was examined by open-circuit potential (OCP) measurements and confirmed by ab initio calculations demonstrating a downshift of Fermi level around 1 eV for the case of bilateral doping.
In a joint theoretical and experimental investigation we show that a series of transition metals with strained body-centered cubic lattice ---W, Ta, Nb, and Mo--- host surface states that are topologically protected by mirror symmetry. Our finding extends the class of topologically nontrivial systems by topological crystalline transition metals. The investigation is based on independent calculations of the electronic structures and of topological invariants, the results of which agree with established properties of the Dirac-type surface state in W(110). To further support our prediction, we investigate both experimentally by spin-resolved inverse photoemission and theoretically an unoccupied topologically nontrivial surface state in Ta(110).
Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا