Do you want to publish a course? Click here

Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

145   0   0.0 ( 0 )
 Added by Danil Boukhvalov W
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.



rate research

Read More

We report the results of X-ray spectroscopy and Raman measurements of as-prepared graphene on a high quality copper surface and the same materials after 1.5 years under different conditions (ambient and low humidity). The obtained results were compared with density functional theory calculations of the formation energies and electronic structures of various structural defects in graphene/Cu interfaces. For evaluation of the stability of the carbon cover, we propose a two-step model. The first step is oxidation of the graphene, and the second is perforation of graphene with the removal of carbon atoms as part of the carbon dioxide molecule. Results of the modeling and experimental measurements provide evidence that graphene grown on high-quality copper substrate becomes robust and stable in time (1.5 years). However, the stability of this interface depends on the quality of the graphene and the number of native defects in the graphene and substrate. The effect of the presence of a metallic substrate with defects on the stability and electronic structure of graphene is also discussed.
The results of characterization of TiAlSiON hard coatings deposited on ferric-chromium AISI 430 stainless steel by plasma enhanced magnetron sputtering are presented. The coating with maximum hardness (of 45 GPa) was obtained at the following optimal values of elemental concentrations: Si ~5 at.%, Al ~15 at.%, and Ti ~27 at.%. The elastic modulus of the coating was 590 GPa. The reading of gaseous mixture (Ar-N2) pressure was 1*10-3 Torr and the reading of partial pressure of oxygen (O2) was 1*10-5 Torr. The X-ray diffraction (XRD) measurements showed the presence of Ti(Al)N. High-energy resolved XPS spectra of core levels revealed the formation of Ti-N, Ti-O-N, Si-N and Al-O-N bonds. Comparison of XPS valence band spectra with specially performed density functional theory calculations for two ordered and few disordered TiN1-xOx (0 =< x <= 1) demonstrates that a Ti(Al)OxNy phase is formed on the surface of AISI430 steel upon the plasma enhanced magnetron sputtering, which provides this material with a good combination of high hardness and improved oxidation resistance.
Intercalation of different species under graphene on metals is an effective way to tailor electronic properties of these systems. Here we present the successful intercalation of metallic (Cu) and gaseous (oxygen) specimens underneath graphene on Ir(111) and Ru(0001), respectively, that allows to change the charge state of graphene as well as to modify drastically its electronic structure in the vicinity of the Fermi level. We employ ARPES and STS spectroscopic methods in combination with state-of-the-art DFT calculations in order to illustrate how the energy dispersion of graphene-derived states can be studied in the macro- and nm-scale experiments.
We develop a theoretical framework for understanding dynamic morphologies and stability of droplet interface bilayers (DIBs), accounting for lipid kinetics in the monolayers and bilayer, and droplet evaporation due to imbalance between osmotic and Laplace pressures. Our theory quantitatively describes distinct pathways observed in experiments when DIBs become unstable. We find that when the timescale for lipid desorption is slow compared to droplet evaporation, the lipid bilayer will grow and the droplets approach a hemispherical shape. In contrast, when lipid desorption is fast, the bilayer area will shrink and the droplets eventually detach. Our model also suggests there is a critical size below which DIBs cannot be stable, which may explain experimental difficulties in miniaturising the DIB platform.
Two-dimensional alloys of carbon and nitrogen represent an urgent interest due to prospective applications in nanomechanical and optoelectronic devices. Stability of these chemical structures must be understood as a function of their composition. The present study employs hybrid density functional theory and reactive molecular dynamics simulations to get insights regarding how many nitrogen atoms can be incorporated into the graphene sheet without destroying it. We conclude that (1) C:N=56:28 structure and all nitrogen-poorer structures maintain stability at 1000 K; (2) stability suffers from N-N bonds; (3) distribution of electron density heavily depends on the structural pattern in the N-doped graphene. Our calculations support experimental efforts on the production of highly N-doped graphene and tuning mechanical and optoelectronic properties of graphene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا