Do you want to publish a course? Click here

Dynamics of 2D Material Membranes

176   0   0.0 ( 0 )
 Added by Peter Steeneken
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamics of suspended two-dimensional (2D) materials has received increasing attention during the last decade, yielding new techniques to study and interpret the physics that governs the motion of atomically thin layers. This has led to insights into the role of thermodynamic and nonlinear effects as well as the mechanisms that govern dissipation and stiffness in these resonators. In this review, we present the current state-of-the-art in the experimental study of the dynamics of 2D membranes. The focus will be both on the experimental measurement techniques and on the interpretation of the physical phenomena exhibited by atomically thin membranes in the linear and nonlinear regimes. We will show that resonant 2D membranes have emerged both as sensitive probes of condensed matter physics in ultrathin layers, and as sensitive elements to monitor small external forces or other changes in the environment. New directions for utilizing suspended 2D membranes for material characterization, thermal transport, and gas interactions will be discussed and we conclude by outlining the challenges and opportunities in this upcoming field.



rate research

Read More

Harnessing chaos or intrinsic nonlinear behaviours from dynamical systems is a promising avenue for the development of unconventional information processing technologies. However, the exploitation of such features in spintronic devices has not been attempted despite the many theoretical and experimental evidence of nonlinear behaviour of the magnetization dynamics in nanomagnetic systems. Here, we propose a first step in that direction by unveiling and characterizing the patterns and symbolic dynamics originating from the nonlinear chaotic time-resolved electrical signals generated experimentally by a nanocontact vortex oscillator (NCVO). We use advanced filtering methods to dissociate nonlinear deterministic patterns from thermal fluctuations and show that the emergence of chaos results in the unpredictable alternation of simple oscillatory patterns controlled by the NCVOs core-polarity switching. With phase-space reconstruction techniques, we perform a symbolic analysis of the time series to assess the level of complexity and entropy generated in the chaotic regime. We find that at the centre of its incommensurate region, it can exhibit maximal entropy and complexity. This suggests that NCVOs are promising nonlinear nanoscale source of entropy that could be harnessed for information processing.
Thin nanomaterials are key constituents of modern quantum technologies and materials research. Identifying specimens of these materials with properties required for the development of state of the art quantum devices is usually a complex and lengthy human task. In this work we provide a neural-network driven solution that allows for accurate and efficient scanning, data-processing and sample identification of experimentally relevant two-dimensional materials. We show how to approach classification of imperfect imbalanced data sets using an iterative application of multiple noisy neural networks. We embed the trained classifier into a comprehensive solution for end-to-end automatized data processing and sample identification.
As graphene became one of the most important materials today, there is a renewed interest on others similar structures. One example is silicene, the silicon analogue of graphene. It share some the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.
We study the infrared dynamics of low-energy atoms interacting with a sample of suspended graphene at finite temperature. The dynamics exhibits severe infrared divergences order by order in perturbation theory as a result of the singular nature of low-energy flexural phonon emission. Our model can be viewed as a two-channel generalization of the independent boson model with asymmetric atom-phonon coupling. This allows us to take advantage of the exact non-perturbative solution of the independent boson model in the stronger channel while treating the weaker one perturbatively. In the low-energy limit, the exact solution can be viewed as a resummation (exponentiation) of the most divergent diagrams in the perturbative expansion. As a result of this procedure, we obtain the atoms Green function which we use to calculate the atom damping rate, a quantity equal to the quantum sticking rate. A characteristic feature of our results is that the Greens function retains a weak, infrared cutoff dependence that reflects the reduced dimensionality of the problem. As a consequence, we predict a measurable dependence of the sticking rate on graphene sample size. We provide detailed predictions for the sticking rate of atomic hydrogen as a function of temperature and sample size. The resummation yields an enhanced sticking rate relative to the conventional Fermi golden rule result (equivalent to the one-loop atom self-energy), as higher-order processes increase damping at finite temperature.
Two-dimensional atomic crystals (2DACs) can be mechanically assembled with precision for the fabrication of heterostructures, allowing for the combination of material building blocks with great flexibility. In addition, while conventional nanolithography can be detrimental to most of the 2DACs which are not sufficiently inert, mechanical assembly potentially minimizes the nanofabrication processing and preserves the intrinsic physical properties of the 2DACs. In this work we study the interfacial charge transport between various 2DACs and electrical contacts, by fabricating and characterizing 2DAC-superconductor junctions through mechanical transfer. Compared to devices fabricated with conventional nanolithography, mechanically assembled devices show comparable or better interface transparency. Surface roughness at the electrical contacts is identified to be a major limitation to the interface quality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا