Do you want to publish a course? Click here

Infrared Dynamics of Cold Atoms on Hot Graphene Membranes

52   0   0.0 ( 0 )
 Added by Valeri Kotov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the infrared dynamics of low-energy atoms interacting with a sample of suspended graphene at finite temperature. The dynamics exhibits severe infrared divergences order by order in perturbation theory as a result of the singular nature of low-energy flexural phonon emission. Our model can be viewed as a two-channel generalization of the independent boson model with asymmetric atom-phonon coupling. This allows us to take advantage of the exact non-perturbative solution of the independent boson model in the stronger channel while treating the weaker one perturbatively. In the low-energy limit, the exact solution can be viewed as a resummation (exponentiation) of the most divergent diagrams in the perturbative expansion. As a result of this procedure, we obtain the atoms Green function which we use to calculate the atom damping rate, a quantity equal to the quantum sticking rate. A characteristic feature of our results is that the Greens function retains a weak, infrared cutoff dependence that reflects the reduced dimensionality of the problem. As a consequence, we predict a measurable dependence of the sticking rate on graphene sample size. We provide detailed predictions for the sticking rate of atomic hydrogen as a function of temperature and sample size. The resummation yields an enhanced sticking rate relative to the conventional Fermi golden rule result (equivalent to the one-loop atom self-energy), as higher-order processes increase damping at finite temperature.



rate research

Read More

A continuum model for low-energy physisorption on a membrane under tension is proposed and studied with variational mean-field theory. A discontinuous change in the energy-dependent sticking coefficient is predicted under certain conditions. This singularity is a result of the bosonic orthogonality catastrophe of the vibrational states of the membrane. The energy-dependent sticking coefficient is predicted to have exponential scaling in 1/E above the singularity. The application of this model to the quantum sticking of cold hydrogen to suspended graphene is discussed. The model predicts that a beam of atomic hydrogen can be completely reflected by suspended graphene at ultralow energies.
As mechanical structures enter the nanoscale regime, the influence of van der Waals forces increases. Graphene is attractive for nanomechanical systems because its Youngs modulus and strength are both intrinsically high, but the mechanical behavior of graphene is also strongly influenced by the van der Waals force. For example, this force clamps graphene samples to substrates, and also holds together the individual graphene sheets in multilayer samples. Here we use a pressurized blister test to directly measure the adhesion energy of graphene sheets with a silicon oxide substrate. We find an adhesion energy of 0.45 pm 0.02 J/m2 for monolayer graphene and 0.31 pm 0.03 J/m2 for samples containing 2-5 graphene sheets. These values are larger than the adhesion energies measured in typical micromechanical structures and are comparable to solid/liquid adhesion energies. We attribute this to the extreme flexibility of graphene, which allows it to conform to the topography of even the smoothest substrates, thus making its interaction with the substrate more liquid-like than solid-like.
We present a detailed transmission electron microscopy and electron diffraction study of the thinnest possible membrane, a single layer of carbon atoms suspended in vacuum and attached only at its edges. Membranes consisting of two graphene layers are also reported. We find that the membranes exhibit an apparently random spontaneous curvature that is strongest in single-layer membranes. A direct visualization of the roughness is presented for two-layer membranes where we used the variation of diffracted intensities with the local orientation of the membrane.
The dynamics of suspended two-dimensional (2D) materials has received increasing attention during the last decade, yielding new techniques to study and interpret the physics that governs the motion of atomically thin layers. This has led to insights into the role of thermodynamic and nonlinear effects as well as the mechanisms that govern dissipation and stiffness in these resonators. In this review, we present the current state-of-the-art in the experimental study of the dynamics of 2D membranes. The focus will be both on the experimental measurement techniques and on the interpretation of the physical phenomena exhibited by atomically thin membranes in the linear and nonlinear regimes. We will show that resonant 2D membranes have emerged both as sensitive probes of condensed matter physics in ultrathin layers, and as sensitive elements to monitor small external forces or other changes in the environment. New directions for utilizing suspended 2D membranes for material characterization, thermal transport, and gas interactions will be discussed and we conclude by outlining the challenges and opportunities in this upcoming field.
The decay dynamics of excited carriers in graphene have attracted wide scientific attention, as the gapless Dirac electronic band structure opens up relaxation channels that are not allowed in conventional materials. We report Fermi-level-dependent mid-infrared emission in graphene originating from a previously unobserved decay channel: hot plasmons generated from optically excited carriers. The observed Fermi-level dependence rules out Planckian light emission mechanisms and is consistent with the calculated plasmon emission spectra in photoinverted graphene. Evidence for bright hot plasmon emission is further supported by Fermi-level-dependent and polarization-dependent resonant emission from graphene plasmonic nanoribbon arrays under pulsed laser excitation. Spontaneous plasmon emission is a bright emission process as our calculations for our experimental conditions indicate that the spectral flux of spontaneously generated plasmons is several orders of magnitude higher than blackbody emission at a temperature of several thousand Kelvin. In this work, it is shown that a large enhancement in radiation efficiency of graphene plasmons can be achieved by decorating graphene surface with gold nanodisks, which serve as out-coupling scatterers and promote localized plasmon excitation when they are resonant with the incoming excitation light. These observations set a framework for exploration of ultrafast and ultrabright mid-infrared emission processes and light sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا