In this paper, we prove the ampleness conjecture and Serranos conjecture for strictly nef divisors on K-trivial fourfolds. Specifically, we show that any strictly nef divisors on projective fourfolds with trivial canonical bundle and vanishing irregularity are ample.
Any ample Cartier divisor D on a projective variety X is strictly nef (i.e. D.C>0 for any effective curve C on X). In general, the converse statement does not hold. But this is conjectured to be true for anticanonical divisors. The present paper establishes this fact for normal complex projective threefolds with canonical singularities. This result extends several previously known special cases. The proof rests mainly on sophisticated techniques of three dimensional birational geometry developed in the last two decades.
We give a criterion for a nef divisor $D$ to be semiample on a Calabi--Yau threefold $X$ when $D^3=0=c_2(X)cdot D$ and $c_3(X) eq 0$. As a direct consequence, we show that on such a variety $X$, if $D$ is strictly nef and $ u(D) eq 1$, then $D$ is ample; we also show that if there exists a nef non-ample divisor $D$ with $D otequiv 0$, then $X$ contains a rational curve when its topological Euler characteristic is not $0$.
For a given K-polystable Fano manifold X and a natural number l, we show that there exists a rational number 0 < c < 1 depending only on the dimension of X, such that $Din |-lK_X|$ is GIT-(semi/poly)stable under the action of Aut(X) if and only if the pair $(X, frac{epsilon}{l} D)$ is K-(semi/poly)stable for some rational $0 < {epsilon} < c$.
We show the existence of rank 6 Ulrich bundles on a smooth cubic fourfold. First, we construct a simple sheaf E of rank 6 as an elementary modification of an ACM bundle of rank 6 on a smooth cubic fourfold. Such an E appears as an extension of two Lehn-Lehn-Sorger-van Straten sheaves. Then we prove that a general deformation of E(1) becomes Ulrich. In particular, this says that general cubic fourfolds have Ulrich complexity 6.