Do you want to publish a course? Click here

On projective varieties with nef anticanonical divisors

160   0   0.0 ( 0 )
 Added by Qi Zhang
 Publication date 2004
  fields
and research's language is English
 Authors Qi Zhang




Ask ChatGPT about the research

We prove a structure theorem for projective varieties with nef anticanonical divisors.



rate research

Read More

97 - H. Uehara 1999
Any ample Cartier divisor D on a projective variety X is strictly nef (i.e. D.C>0 for any effective curve C on X). In general, the converse statement does not hold. But this is conjectured to be true for anticanonical divisors. The present paper establishes this fact for normal complex projective threefolds with canonical singularities. This result extends several previously known special cases. The proof rests mainly on sophisticated techniques of three dimensional birational geometry developed in the last two decades.
In this paper, we prove the ampleness conjecture and Serranos conjecture for strictly nef divisors on K-trivial fourfolds. Specifically, we show that any strictly nef divisors on projective fourfolds with trivial canonical bundle and vanishing irregularity are ample.
We give a criterion for a nef divisor $D$ to be semiample on a Calabi--Yau threefold $X$ when $D^3=0=c_2(X)cdot D$ and $c_3(X) eq 0$. As a direct consequence, we show that on such a variety $X$, if $D$ is strictly nef and $ u(D) eq 1$, then $D$ is ample; we also show that if there exists a nef non-ample divisor $D$ with $D otequiv 0$, then $X$ contains a rational curve when its topological Euler characteristic is not $0$.
We generalise Flo{}ystads theorem on the existence of monads on the projective space to a larger set of projective varieties. We consider a variety $X$, a line bundle $L$ on $X$, and a base-point-free linear system of sections of $L$ giving a morphism to the projective space whose image is either arithmetically Cohen-Macaulay (ACM), or linearly normal and not contained in a quadric. We give necessary and sufficient conditions on integers $a$, $b$, and $c$ for a monad of type [ 0to(L^vee)^atomathcal{O}_{X}^{,b}to L^cto0 ] to exist. We show that under certain conditions there exists a monad whose cohomology sheaf is simple. We furthermore characterise low-rank vector bundles that are the cohomology sheaf of some monad as above. Finally, we obtain an irreducible family of monads over the projective space and make a description on how the same method could be used on an ACM smooth projective variety $X$. We establish the existence of a coarse moduli space of low-rank vector bundles over an odd-dimensional $X$ and show that in one case this moduli space is irreducible.
121 - Adrian Langer 2019
We show various properties of smooth projective D-affine varieties. In particular, any smooth projective D-affine variety is algebraically simply connected and its image under a fibration is D-affine. In characteristic zero such D-affine varieties are also uniruled. We also show that (apart from a few small characteristics) a smooth projective surface is D-affine if and only if it is isomorphic to either ${mathbb P}^2$ or ${mathbb P}^1times {mathbb P}^1$. In positive characteristic, a basic tool in the proof is a new generalization of Miyaokas generic semipositivity theorem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا