No Arabic abstract
We present a reanalysis of GW151226, the second binary black hole merger discovered by the LIGO-Virgo Collaboration. Previous analysis showed that the best-fit waveform for this event corresponded to the merger of a $sim 14 , M_odot$ black hole with a $sim 7.5 , M_odot$ companion. In this work, we perform parameter estimation using a waveform model that includes the effects of orbital precession and higher-order radiative multipoles, and find that the mass and spin parameters of GW151226 have bimodal posterior distributions. The two modes are separated in mass ratio, $q$: the high-$q$ mode ($0.4 lesssim q < 1$) is consistent with the results reported in the literature. On the other hand, the low-$q$ mode ($q lesssim 0.4$), which describes a binary with component masses of $sim 29 , M_odot$ and $sim , 4.3 M_odot$, is new. The low-$q$ mode has several interesting properties: (a) the secondary black hole mass may fall in the lower mass gap of astrophysical black hole population; and (b) orbital precession is driven by the primary black hole spin, which has a dimensionless magnitude as large as $sim 0.88$ and is tilted away from the orbital angular momentum at an angle of $sim 47^circ$. The new low-$q$ mode has a log likelihood that is about six points higher than that of the high-$q$ mode, and can therefore affect the astrophysical interpretation of GW151226. Crucially, we show that the low-$q$ mode disappears if we neglect either higher multipoles or orbital precession in the parameter estimation. More generally, this work highlights how incorporating additional physical effects into waveform models used in parameter estimations can alter the interpretation of gravitational-wave sources.
It is difficult to discover pulsars via their gamma-ray emission because current instruments typically detect fewer than one photon per million rotations. This creates a significant computing challenge for isolated pulsars, where the typical parameter search space spans wide ranges in four dimensions. It is even more demanding when the pulsar is in a binary system, where the orbital motion introduces several additional unknown parameters. Building on earlier work by Pletsch & Clark (arXiv:1408.6962), we present optimal methods for such searches. These can also incorporate external constraints on the parameter space to be searched, for example, from optical observations of a presumed binary companion. The solution has two parts. The first is the construction of optimal search grids in parameter space via a parameter-space metric, for initial semicoherent searches and subsequent fully coherent follow-ups. The second is a method to demodulate and detect the periodic pulsations. These methods have different sensitivity properties than traditional radio searches for binary pulsars and might unveil new populations of pulsars.
The star S2 orbiting the compact radio source Sgr A* is a precision probe of the gravitational field around the closest massive black hole (candidate). Over the last 2.7 decades we have monitored the stars radial velocity and motion on the sky, mainly with the SINFONI and NACO adaptive optics (AO) instruments on the ESO VLT, and since 2017, with the four-telescope interferometric beam combiner instrument GRAVITY. In this paper we report the first detection of the General Relativity (GR) Schwarzschild Precession (SP) in S2s orbit. Owing to its highly elliptical orbit (e = 0.88), S2s SP is mainly a kink between the pre-and post-pericentre directions of motion ~ +- 1 year around pericentre passage, relative to the corresponding Kepler orbit. The superb 2017-2019 astrometry of GRAVITY defines the pericentre passage and outgoing direction. The incoming direction is anchored by 118 NACO-AO measurements of S2s position in the infrared reference frame, with an additional 75 direct measurements of the S2-Sgr A* separation during bright states (flares) of Sgr A*. Our 14-parameter model fits for the distance, central mass, the position and motion of the reference frame of the AO astrometry relative to the mass, the six parameters of the orbit, as well as a dimensionless parameter f_SP for the SP (f_SP = 0 for Newton and 1 for GR). From data up to the end of 2019 we robustly detect the SP of S2, del phi = 12 per orbital period. From posterior fitting and MCMC Bayesian analysis with different weighting schemes and bootstrapping we find f_SP = 1.10 +- 0.19. The S2 data are fully consistent with GR. Any extended mass inside S2s orbit cannot exceed ~ 0.1% of the central mass. Any compact third mass inside the central arcsecond must be less than about 1000 M_sun.
We report the results of optical--infrared follow-up observations of the gravitational wave (GW) event GW151226 detected by the Advanced LIGO in the framework of J-GEM (Japanese collaboration for Gravitational wave ElectroMagnetic follow-up). We performed wide-field optical imaging surveys with Kiso Wide Field Camera (KWFC), Hyper Suprime-Cam (HSC), and MOA-cam3. The KWFC survey started at 2.26 days after the GW event and covered 778 deg$^2$ centered at the high Galactic region of the skymap of GW151226. We started the HSC follow-up observations from 12 days after the event and covered an area of 63.5 deg$^2$ of the highest probability region of the northern sky with the limiting magnitudes of 24.6 and 23.8 for i band and z band, respectively. MOA-cam3 covered 145 deg$^2$ of the skymap with MOA-red filter 2.5 months after the GW alert. Total area covered by the wide-field surveys was 986.5 deg$^2$. The integrated detection probability of all the observed area was $sim$29%. We also performed galaxy-targeted observations with six optical and near-infrared telescopes from 1.61 days after the event. Total of 238 nearby (<100 Mpc) galaxies were observed with the typical I band limiting magnitude of $sim$19.5. We detected 13 supernova candidates with the KWFC survey, and 60 extragalactic transients with the HSC survey. Two third of the HSC transients were likely supernovae and the remaining one third were possible active galactic nuclei. With our observational campaign, we found no transients that are likely to be associated with GW151226.
A repeating fast radio burst (FRB), FRB 20180916B (hereafter FRB 180916), was reported to have a 16.35-day period. This period might be related to a precession period. In this paper, we investigate two precession models to explain the periodic activity of FRB 180916. In both models, the radio emission of FRB 180916 is produced by a precessing jet. For the first disk-driven jet precession model, an extremely low viscous parameter (i.e., the dimensionless viscosity parameter $alpha lesssim 10^{-8}$) is required to explain the precession of FRB 180916, which implies its implausibility. For the second tidal force-driven jet precession model, we consider a compact binary consists of a neutron star/black hole and a white dwarf; the white dwarf fills its Roche lobe and mass transfer occurs. Due to the misalignment between the disk and orbital plane, the tidal force of the white dwarf can drive jet precession. We show that the relevant precession periods are several days to hundreds of days, depending on the specific accretion rates and component masses. The duration of FRB 180916 generation in the binary with extremely high accretion rate will be several thousand years.
Pulsar timing array projects measure the pulse arrival times of millisecond pulsars for the primary purpose of detecting nanohertz-frequency gravitational waves. The measurements include contributions from a number of astrophysical and instrumental processes, which can either be deterministic or stochastic. It is necessary to develop robust statistical and physical models for these noise processes because incorrect models diminish sensitivity and may cause a spurious gravitational wave detection. Here we characterise noise processes for the 26 pulsars in the second data release of the Parkes Pulsar Timing Array using Bayesian inference. In addition to well-studied noise sources found previously in pulsar timing array data sets such as achromatic timing noise and dispersion measure variations, we identify new noise sources including time-correlated chromatic noise that we attribute to variations in pulse scattering. We also identify exponential dip events in four pulsars, which we attribute to magnetospheric effects as evidenced by pulse profile shape changes observed for three of the pulsars. This includes an event in PSR J1713$+$0747, which had previously been attributed to interstellar propagation. We present noise models to be used in searches for gravitational waves. We outline a robust methodology to evaluate the performance of noise models and identify unknown signals in the data. The detection of variations in pulse profiles highlights the need to develop efficient profile domain timing methods.