Do you want to publish a course? Click here

SaRoCo: Detecting Satire in a Novel Romanian Corpus of News Articles

75   0   0.0 ( 0 )
 Added by Radu Tudor Ionescu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work, we introduce a corpus for satire detection in Romanian news. We gathered 55,608 public news articles from multiple real and satirical news sources, composing one of the largest corpora for satire detection regardless of language and the only one for the Romanian language. We provide an official split of the text samples, such that training news articles belong to different sources than test news articles, thus ensuring that models do not achieve high performance simply due to overfitting. We conduct experiments with two state-of-the-art deep neural models, resulting in a set of strong baselines for our novel corpus. Our results show that the machine-level accuracy for satire detection in Romanian is quite low (under 73% on the test set) compared to the human-level accuracy (87%), leaving enough room for improvement in future research.



rate research

Read More

Large-scale and high-quality corpora are necessary for evaluating machine reading comprehension models on a low-resource language like Vietnamese. Besides, machine reading comprehension (MRC) for the health domain offers great potential for practical applications; however, there is still very little MRC research in this domain. This paper presents ViNewsQA as a new corpus for the Vietnamese language to evaluate healthcare reading comprehension models. The corpus comprises 22,057 human-generated question-answer pairs. Crowd-workers create the questions and their answers based on a collection of over 4,416 online Vietnamese healthcare news articles, where the answers comprise spans extracted from the corresponding articles. In particular, we develop a process of creating a corpus for the Vietnamese machine reading comprehension. Comprehensive evaluations demonstrate that our corpus requires abilities beyond simple reasoning, such as word matching and demanding difficult reasoning based on single-or-multiple-sentence information. We conduct experiments using different types of machine reading comprehension methods to achieve the first baseline performances, compared with further models performances. We also measure human performance on the corpus and compared it with several powerful neural network-based and transfer learning-based models. Our experiments show that the best machine model is ALBERT, which achieves an exact match score of 65.26% and an F1-score of 84.89% on our corpus. The significant differences between humans and the best-performance model (14.53% of EM and 10.90% of F1-score) on the test set of our corpus indicate that improvements in ViNewsQA could be explored in the future study. Our corpus is publicly available on our website for the research purpose to encourage the research community to make these improvements.
Media plays an important role in shaping public opinion. Biased media can influence people in undesirable directions and hence should be unmasked as such. We observe that featurebased and neural text classification approaches which rely only on the distribution of low-level lexical information fail to detect media bias. This weakness becomes most noticeable for articles on new events, where words appear in new contexts and hence their bias predictiveness is unclear. In this paper, we therefore study how second-order information about biased statements in an article helps to improve detection effectiveness. In particular, we utilize the probability distributions of the frequency, positions, and sequential order of lexical and informational sentence-level bias in a Gaussian Mixture Model. On an existing media bias dataset, we find that the frequency and positions of biased statements strongly impact article-level bias, whereas their exact sequential order is secondary. Using a standard model for sentence-level bias detection, we provide empirical evidence that article-level bias detectors that use second-order information clearly outperform those without.
Production of news content is growing at an astonishing rate. To help manage and monitor the sheer amount of text, there is an increasing need to develop efficient methods that can provide insights into emerging content areas, and stratify unstructured corpora of text into `topics that stem intrinsically from content similarity. Here we present an unsupervised framework that brings together powerful vector embeddings from natural language processing with tools from multiscale graph partitioning that can reveal natural partitions at different resolutions without making a priori assumptions about the number of clusters in the corpus. We show the advantages of graph-based clustering through end-to-end comparisons with other popular clustering and topic modelling methods, and also evaluate different text vector embeddings, from classic Bag-of-Words to Doc2Vec to the recent transformers based model Bert. This comparative work is showcased through an analysis of a corpus of US news coverage during the presidential election year of 2016.
Online users today are exposed to misleading and propagandistic news articles and media posts on a daily basis. To counter thus, a number of approaches have been designed aiming to achieve a healthier and safer online news and media consumption. Automatic systems are able to support humans in detecting such content; yet, a major impediment to their broad adoption is that besides being accurate, the decisions of such systems need also to be interpretable in order to be trusted and widely adopted by users. Since misleading and propagandistic content influences readers through the use of a number of deception techniques, we propose to detect and to show the use of such techniques as a way to offer interpretability. In particular, we define qualitatively descriptive features and we analyze their suitability for detecting deception techniques. We further show that our interpretable features can be easily combined with pre-trained language models, yielding state-of-the-art results.
In this paper, we introduce FreSaDa, a French Satire Data Set, which is composed of 11,570 articles from the news domain. In order to avoid reporting unreasonably high accuracy rates due to the learning of characteristics specific to publication sources, we divided our samples into training, validation and test, such that the training publication sources are distinct from the validation and test publication sources. This gives rise to a cross-domain (cross-source) satire detection task. We employ two classification methods as baselines for our new data set, one based on low-level features (character n-grams) and one based on high-level features (average of CamemBERT word embeddings). As an additional contribution, we present an unsupervised domain adaptation method based on regarding the pairwise similarities (given by the dot product) between the training samples and the validation samples as features. By including these domain-specific features, we attain significant improvements for both character n-grams and CamemBERT embeddings.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا