Do you want to publish a course? Click here

Global Solutions of Three-dimensional Inviscid MHD Fluids with Velocity Damping in Horizontally Periodic Domains

94   0   0.0 ( 0 )
 Added by Fei Jiang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The emph{two-dimensional} (2D) existence result of global(-in-time) solutions for the motion equations of incompressible, inviscid, non-resistive magnetohydrodynamic (MHD) fluids with velocity damping had been established in [Wu--Wu--Xu, SIAM J. Math. Anal. 47 (2013), 2630--2656]. This paper further studies the existence of global solutions for the emph{three-dimensional} (a dimension of real world) initial-boundary value problem in a horizontally periodic domain with finite height. Motivated by the multi-layers energy method introduced in [Guo--Tice, Arch. Ration. Mech. Anal. 207 (2013), 459--531], we develop a new type of two-layer energy structure to overcome the difficulty arising from three-dimensional nonlinear terms in the MHD equations, and thus prove the initial-boundary value problem admits a unique global solution. Moreover the solution has the exponential decay-in-time around some rest state. Our two-layer energy structure enjoys two features: (1) the lower-order energy (functional) can not be controlled by the higher-order energy. (2) under the emph{a priori} smallness assumption of lower-order energy, we first close the higher-order energy estimates, and then further close the lower-energy estimates in turn.



rate research

Read More

69 - Remi Carles 2019
We construct global weak solutions to isothermal quantum Navier-Stokes equations, with or without Korteweg term, in the whole space of dimension at most three. Instead of working on the initial set of unknown functions, we consider an equivalent reformulation, based on a time-dependent rescaling, that we introduced in a previous paper to study the large time behavior, and which provides suitable a priori estimates, as opposed to the initial formulation where the potential energy is not signed. We proceed by working on tori whose size eventually becomes infinite. On each fixed torus, we consider the equations in the presence of drag force terms. Such equations are solved by regularization, and the limit where the drag force terms vanish is treated by resuming the notion of renormalized solution developed by I. Lacroix-Violet and A. Vasseur. We also establish global existence of weak solutions for the isothermal Korteweg equation (no viscosity), when initial data are well-prepared, in the sense that they stem from a Madelung transform.
It is still an open problem whether the inhibition phenomenon of Rayleigh--Taylor (RT) instability by horizontal magnetic field can be mathematically proved in a non-resistive magnetohydrodynamic (MHD) fluid in a two-dimensional (2D) horizontal slab domain, since it had been roughly verified by a 2D linearized motion equations in 2012 cite{WYC}. In this paper, we find that this inhibition phenomenon can be rigorously verified in the inhomogeneous, incompressible, inviscid case with velocity damping. More precisely, there exists a critical number $m_{rm{C}}$ such that if the strength $|m|$ of horizontal magnetic field is bigger than $m_{rm{C}}$, then the small perturbation solution around the magnetic RT equilibrium state is exponentially stable in time. Our result is also the first mathematical one based on the nonlinear motion equations for the proof of inhibition of flow instabilities by a horizontal magnetic field in a horizontal slab domain. In addition, we also provide a nonlinear instability result for the case $|m|in [0,m_{rm{C}})$. Our instability result presents that horizontal magnetic field can not inhibit the RT instability, if its strength is to small.
For the generalized surface quasi-geostrophic equation $$left{ begin{aligned} & partial_t theta+ucdot abla theta=0, quad text{in } mathbb{R}^2 times (0,T), & u= abla^perp psi, quad psi = (-Delta)^{-s}theta quad text{in } mathbb{R}^2 times (0,T) , end{aligned} right. $$ $0<s<1$, we consider for $kge1$ the problem of finding a family of $k$-vortex solutions $theta_varepsilon(x,t)$ such that as $varepsilonto 0$ $$ theta_varepsilon(x,t) rightharpoonup sum_{j=1}^k m_jdelta(x-xi_j(t)) $$ for suitable trajectories for the vortices $x=xi_j(t)$. We find such solutions in the special cases of vortices travelling with constant speed along one axis or rotating with same speed around the origin. In those cases the problem is reduced to a fractional elliptic equation which is treated with singular perturbation methods. A key element in our construction is a proof of the non-degeneracy of the radial ground state for the so-called fractional plasma problem $$(-Delta)^sW = (W-1)^gamma_+, quad text{in } mathbb{R}^2, quad 1<gamma < frac{1+s}{1-s}$$ whose existence and uniqueness have recently been proven in cite{chan_uniqueness_2020}.
In this article we prove the global existence of weak solutions for a diffuse interface model in a bounded domain (both in 2D and 3D) involving incompressible magnetic fluids with unmatched densities. The model couples the incompressible Navier-Stokes equations, gradient flow of the magnetization vector and the Cahn-Hilliard dynamics describing the partial mixing of two fluids. The density of the mixture depends on an order parameter and the modelling, specifically the density dependence, is inspired from Abels, Garcke and Gr{u}n 2011.
67 - N. Burq 2018
In this article, we study the decay of the solutions of Schrodinger equations in the exterior of an obstacle. The main situations we are interested in are the general case (no non-trapping assumptions) or some weakly trapping situations
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا