Do you want to publish a course? Click here

Global weak solutions for quantum isothermal fluids

70   0   0.0 ( 0 )
 Added by Remi Carles
 Publication date 2019
  fields Physics
and research's language is English
 Authors Remi Carles




Ask ChatGPT about the research

We construct global weak solutions to isothermal quantum Navier-Stokes equations, with or without Korteweg term, in the whole space of dimension at most three. Instead of working on the initial set of unknown functions, we consider an equivalent reformulation, based on a time-dependent rescaling, that we introduced in a previous paper to study the large time behavior, and which provides suitable a priori estimates, as opposed to the initial formulation where the potential energy is not signed. We proceed by working on tori whose size eventually becomes infinite. On each fixed torus, we consider the equations in the presence of drag force terms. Such equations are solved by regularization, and the limit where the drag force terms vanish is treated by resuming the notion of renormalized solution developed by I. Lacroix-Violet and A. Vasseur. We also establish global existence of weak solutions for the isothermal Korteweg equation (no viscosity), when initial data are well-prepared, in the sense that they stem from a Madelung transform.



rate research

Read More

66 - Remi Carles 2021
We consider the large time behavior in two types of equations, posed on the whole space R^d: the Schr{o}dinger equation with a logarithmic nonlinearity on the one hand; compressible, isothermal, Euler, Korteweg and quantum Navier-Stokes equations on the other hand. We explain some connections between the two families of equations, and show how these connections may help having an insight in all cases. We insist on some specific aspects only, and refer to the cited articles for more details, and more complete statements. We try to give a general picture of the results, and present some heuristical arguments that can help the intuition, which are not necessarily found in the mentioned articles.
The emph{two-dimensional} (2D) existence result of global(-in-time) solutions for the motion equations of incompressible, inviscid, non-resistive magnetohydrodynamic (MHD) fluids with velocity damping had been established in [Wu--Wu--Xu, SIAM J. Math. Anal. 47 (2013), 2630--2656]. This paper further studies the existence of global solutions for the emph{three-dimensional} (a dimension of real world) initial-boundary value problem in a horizontally periodic domain with finite height. Motivated by the multi-layers energy method introduced in [Guo--Tice, Arch. Ration. Mech. Anal. 207 (2013), 459--531], we develop a new type of two-layer energy structure to overcome the difficulty arising from three-dimensional nonlinear terms in the MHD equations, and thus prove the initial-boundary value problem admits a unique global solution. Moreover the solution has the exponential decay-in-time around some rest state. Our two-layer energy structure enjoys two features: (1) the lower-order energy (functional) can not be controlled by the higher-order energy. (2) under the emph{a priori} smallness assumption of lower-order energy, we first close the higher-order energy estimates, and then further close the lower-energy estimates in turn.
In this article we prove the global existence of weak solutions for a diffuse interface model in a bounded domain (both in 2D and 3D) involving incompressible magnetic fluids with unmatched densities. The model couples the incompressible Navier-Stokes equations, gradient flow of the magnetization vector and the Cahn-Hilliard dynamics describing the partial mixing of two fluids. The density of the mixture depends on an order parameter and the modelling, specifically the density dependence, is inspired from Abels, Garcke and Gr{u}n 2011.
68 - Jinkai Li , Guozhi Yuan 2021
In this paper, we consider the initial boundary value problem in a cylindrical domain to the three dimensional primitive equations with full eddy viscosity in the momentum equations but with only horizontal eddy diffusivity in the temperature equation. Global well-posedness of $z$-weak solution is established for any such initial datum that itself and its vertical derivative belong to $L^2$. This not only extends the results in cite{Cao5} from the spatially periodic case to general cylindrical domains but also weakens the regularity assumptions on the initial data which are required to be $H^2$ there.
176 - Gui-Qiang Chen 2007
When a plane shock hits a wedge head on, it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. Experimental, computational, and asymptotic analysis has shown that various patterns of shock reflection may occur, including regular and Mach reflection. However, most of the fundamental issues for shock reflection have not been understood, including the global structure, stability, and transition of the different patterns of shock reflection. Therefore, it is essential to establish the global existence and structural stability of solutions of shock reflection in order to understand fully the phenomena of shock reflection. On the other hand, there has been no rigorous mathematical result on the global existence and structural stability of shock reflection, including the case of potential flow which is widely used in aerodynamics. Such problems involve several challenging difficulties in the analysis of nonlinear partial differential equations such as mixed equations of elliptic-hyperbolic type, free boundary problems, and corner singularity where an elliptic degenerate curve meets a free boundary. In this paper we develop a rigorous mathematical approach to overcome these difficulties involved and establish a global theory of existence and stability for shock reflection by large-angle wedges for potential flow. The techniques and ideas developed here will be useful for other nonlinear problems involving similar difficulties.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا