Do you want to publish a course? Click here

Investigating a 3+1D Topological $theta$-Term in the Hamiltonian Formulation of Lattice Gauge Theories for Quantum and Classical Simulations

155   0   0.0 ( 0 )
 Added by Angus Kan
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Quantum technologies offer the prospect to efficiently simulate sign-problem afflicted regimes in lattice field theory, such as the presence of topological terms, chemical potentials, and out-of-equilibrium dynamics. In this work, we derive the 3+1D topological $theta$-term for Abelian and non-Abelian lattice gauge theories in the Hamiltonian formulation, paving the way towards Hamiltonian-based simulations of such terms on quantum and classical computers. We further study numerically the zero-temperature phase structure of a 3+1D U(1) lattice gauge theory with the $theta$-term via exact diagonalization for a single periodic cube. In the strong coupling regime, our results suggest the occurrence of a phase transition at constant values of $theta$, as indicated by an avoided level-crossing and abrupt changes in the plaquette expectation value, the electric energy density, and the topological charge density. These results could in principle be cross-checked by the recently developed 3+1D tensor network methods and quantum simulations, once sufficient resources become available.



rate research

Read More

We review results concerning the theta dependence of 4D SU(N) gauge theories and QCD, where theta is the coefficient of the CP-violating topological term in the Lagrangian. In particular, we discuss theta dependence in the large-N limit. Most results have been obtained within the lattice formulation of the theory via numerical simulations, which allow to investigate the theta dependence of the ground-state energy and the spectrum around theta=0 by determining the moments of the topological charge distribution, and their correlations with other observables. We discuss the various methods which have been employed to determine the topological susceptibility, and higher-order terms of the theta expansion. We review results at zero and finite temperature. We show that the results support the scenario obtained by general large-N scaling arguments, and in particular the Witten-Veneziano mechanism to explain the U(1)_A problem. We also compare with results obtained by other approaches, especially in the large-N limit, where the issue has been also addressed using, for example, the AdS/CFT correspondence. We discuss issues related to theta dependence in full QCD: the neutron electric dipole moment, the dependence of the topological susceptibility on the quark masses, the U(1)_A symmetry breaking at finite temperature. We also consider the 2D CP(N) model, which is an interesting theoretical laboratory to study issues related to topology. We review analytical results in the large-N limit, and numerical results within its lattice formulation. Finally, we discuss the main features of the two-point correlation function of the topological charge density.
124 - Werner Kerler 2004
We present a general formulation of chiral gauge theories, which admits Dirac operators with more general spectra, reveals considerably more possibilities for the structure of the chiral projections, and nevertheless allows appropriate realizations. In our analyses we use two forms of the correlation functions which both also apply in the presence of zero modes and for any value of the index. To account properly for the conditions on the bases the concept of equivalence classes of pairs of them is introduced. The behaviors under gauge transformations and under CP transformations are unambiguously derived.
With advances in quantum computing, new opportunities arise to tackle challenging calculations in quantum field theory. We show that trotterized time-evolution operators can be related by analytic continuation to the Euclidean transfer matrix on an anisotropic lattice. In turn, trotterization entails renormalization of the temporal and spatial lattice spacings. Based on the tools of Euclidean lattice field theory, we propose two schemes to determine Minkowski lattice spacings, using Euclidean data and thereby overcoming the demands on quantum resources for scale setting. In addition, we advocate using a fixed-anisotropy approach to the continuum to reduce both circuit depth and number of independent simulations. We demonstrate these methods with Qiskit noiseless simulators for a $2+1$D discrete non-Abelian $D_4$ gauge theory with two spatial plaquettes.
In the future, ab initio quantum simulations of heavy ion collisions may become possible with large-scale fault-tolerant quantum computers. We propose a quantum algorithm for studying these collisions by looking at a class of observables requiring dramatically smaller volumes: transport coefficients. These form nonperturbative inputs into theoretical models of heavy ions; thus, their calculation reduces theoretical uncertainties without the need for a full-scale simulation of the collision. We derive the necessary lattice operators in the Hamiltonian formulation and describe how to obtain them on quantum computers. Additionally, we discuss ways to efficiently prepare the relevant thermal state of a gauge theory.
We discuss a new strategy for treating the complex action problem of lattice field theories with a $theta$-term based on density of states (DoS) methods. The key ingredient is to use open boundary conditions where the topological charge is not quantized to integers and the density of states is sufficiently well behaved such that it can be computed precisely with recently developed DoS techniques. After a general discussion of the approach and the role of the boundary conditions, we analyze the method for 2-d U(1) lattice gauge theory with a $theta$-term, a model that can be solved in closed form. We show that in the continuum limit periodic and open boundary conditions describe the same physics and derive the DoS, demonstrating that only for open boundary conditions the density is sufficiently well behaved for a numerical evaluation. We conclude our proof of principle analysis with a small test simulation where we numerically compute the density and compare it with the analytical result.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا