No Arabic abstract
We review results concerning the theta dependence of 4D SU(N) gauge theories and QCD, where theta is the coefficient of the CP-violating topological term in the Lagrangian. In particular, we discuss theta dependence in the large-N limit. Most results have been obtained within the lattice formulation of the theory via numerical simulations, which allow to investigate the theta dependence of the ground-state energy and the spectrum around theta=0 by determining the moments of the topological charge distribution, and their correlations with other observables. We discuss the various methods which have been employed to determine the topological susceptibility, and higher-order terms of the theta expansion. We review results at zero and finite temperature. We show that the results support the scenario obtained by general large-N scaling arguments, and in particular the Witten-Veneziano mechanism to explain the U(1)_A problem. We also compare with results obtained by other approaches, especially in the large-N limit, where the issue has been also addressed using, for example, the AdS/CFT correspondence. We discuss issues related to theta dependence in full QCD: the neutron electric dipole moment, the dependence of the topological susceptibility on the quark masses, the U(1)_A symmetry breaking at finite temperature. We also consider the 2D CP(N) model, which is an interesting theoretical laboratory to study issues related to topology. We review analytical results in the large-N limit, and numerical results within its lattice formulation. Finally, we discuss the main features of the two-point correlation function of the topological charge density.
We review recent results on the theta dependence of the ground-state energy and spectrum of four-dimensional SU(N) gauge theories, where theta is the coefficient of the CP-violating topological term F-Fdual in the Lagrangian. In particular, we discuss the results obtained by Monte Carlo simulations of the lattice formulation of QCD, which allow the investigation of theta dependence around theta=0 by determining the moments of the topological charge distribution, and their correlations with other observables. The results for N=3 and larger values of N support the scenario obtained by general large-N scaling arguments.
In $SU(N)$ gauge theory, it is argued recently that there exists a mixed anomaly between the CP symmetry and the 1-form $mathbb{Z}_N$ symmetry at $theta=pi$, and the anomaly matching requires CP to be spontaneously broken at $theta=pi$ if the system is in the confining phase. In this paper, we elaborate on this discussion by examining the large volume behavior of the partition functions of the $SU(N)/mathbb{Z}_N$ theory on $T^4$ a la t Hooft. The periodicity of the partition function in $theta$, which is not $2pi$ due to fractional instanton numbers, suggests the presence of a phase transition at $theta=pi$. We propose lattice simulations to study the distribution of the instanton number in $SU(N)/mathbb{Z}_N$ theories. A characteristic shape of the distribution is predicted when the system is in the confining phase. The measurements of the distribution may be useful in understanding the phase structure of the theory.
We discuss the existence of a conformal phase in SU(N) gauge theories in four dimensions. In this lattice study we explore the model in the bare parameter space, varying the lattice coupling and bare mass. Simulations are carried out with three colors and twelve flavors of dynamical staggered fermions in the fundamental representation. The analysis of the chiral order parameter and the mass spectrum of the theory indicates the restoration of chiral symmetry at zero temperature and the presence of a Coulomb-like phase, depicting a scenario compatible with the existence of an infrared stable fixed point at nonzero coupling. Our analysis supports the conclusion that the onset of the conformal window for QCD-like theories is smaller than Nf=12, before the loss of asymptotic freedom at sixteen and a half flavors. We discuss open questions and future directions.
We study the effects of the CP-breaking topological $theta$-term in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f$ degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the masses of the lowest lying mesons, finding agreement with expectations from the QCD chiral effective action. Then, focusing on the $N_f=2$ case, we consider the baryonic sector and determine, to leading order in the small $theta$ regime, the related holographic instantonic soliton solutions. We find that while the baryon spectrum does not receive ${cal O}(theta)$ corrections, this is not the case for observables like the electromagnetic form factor of the nucleons. In particular, it exhibits a dipole term, which turns out to be vector-meson dominated. The resulting neutron electric dipole moment, which is exactly the opposite as that of the proton, is of the same order of magnitude of previous estimates in the literature. Finally, we compute the CP-violating pion-nucleon coupling constant ${bar g}_{pi N N}$, finding that it is zero to leading order in the large $N_c$ limit.
We present calculations of certain limits of scheme-independent series expansions for the anomalous dimensions of gauge-invariant fermion bilinear operators and for the derivative of the beta function at an infrared fixed point in SU($N_c$) gauge theories with fermions transforming according to two different representations. We first study a theory with $N_f$ fermions in the fundamental representation and $N_{f}$ fermions in the adjoint or symmetric or antisymmetric rank-2 tensor representation, in the limit $N_c to infty$, $N_f to infty$ with $N_f/N_c$ fixed and finite. We then study the $N_c to infty$ limit of a theory with fermions in the adjoint and rank-2 symmetric or antisymmetric tensor representations.