No Arabic abstract
The topological Anderson and Mott insulators are two phases that have so far been separately and widely explored beyond topological band insulators. Here we combine the two seemingly different topological phases into a system of spin-1/2 interacting fermionic atoms in a disordered optical lattice. We find that the topological Anderson and Mott insulators in the noninteracting and clean limits can be adiabatically connected without gap closing in the phase diagram of our model. Lying between the two phases, we uncover a disordered correlated topological insulator, which is induced from a trivial band insulator by the combination of disorder and interaction, as the generalization of topological Anderson insulators to the many-body interacting regime. The phase diagram is determined by computing various topological properties and confirmed by unsupervised and automated machine learning. We develop an approach to provide a unified and clear description of topological phase transitions driven by interaction and disorder. The topological phases can be detected from disorder/interaction induced edge excitations and charge pumping in optical lattices.
We demonstrate that a combination of disorder and interactions in a two-dimensional bulk topological insulator can generically drive its helical edge insulating. We establish this within the framework of helical Luttinger liquid theory and exact Emery-Luther mapping. The gapless glassy edge state spontaneously breaks time-reversal symmetry in a `spin glass fashion, and may be viewed as a localized state of solitons which carry half integer charge. Such a qualitatively distinct edge state provides a simple explanation for heretofore puzzling experimental observations. This phase exhibits a striking non-monotonicity, with the edge growing less localized in both the weak and strong disorder limits.
Topology and disorder have deep connections and a rich combined influence on quantum transport. In order to probe these connections, we synthesized one-dimensional chiral symmetric wires with controllable disorder via spectroscopic Hamiltonian engineering, based on the laser-driven coupling of discrete momentum states of ultracold atoms. We characterize the systems topology through measurement of the mean chiral displacement of the bulk density extracted from quench dynamics. We find evidence for the topological Anderson insulator phase, in which the band structure of an otherwise trivial wire is driven topological by the presence of added disorder. In addition, we observed the robustness of topological wires to weak disorder and measured the transition to a trivial phase in the presence of strong disorder. Atomic interactions in this quantum simulation platform will enable future realizations of strongly interacting topological fluids.
We elucidate the effects of defect disorder and $e$-$e$ interaction on the spectral density of the defect states emerging in the Mott-Hubbard gap of doped transition-metal oxides, such as Y$_{1-x}$Ca$_{x}$VO$_{3}$. A soft gap of kinetic origin develops in the defect band and survives defect disorder for $e$-$e$ interaction strengths comparable to the defect potential and hopping integral values above a doping dependent threshold, otherwise only a pseudogap persists. These two regimes naturally emerge in the statistical distribution of gaps among different defect realizations, which turns out to be of Weibull type. Its shape parameter $k$ determines the exponent of the power-law dependence of the density of states at the chemical potential ($k-1$) and hence distinguishes between the soft gap ($kgeq2$) and the pseudogap ($k<2$) regimes. Both $k$ and the effective gap scale with the hopping integral and the $e$-$e$ interaction in a wide doping range. The motion of doped holes is confined by the closest defect potential and the overall spin-orbital structure. Such a generic behavior leads to complex non-hydrogen-like defect states that tend to preserve the underlying $C$-type spin and $G$-type orbital order and can be detected and analyzed via scanning tunneling microscopy.
Hyperuniform disordered photonic materials (HDPM) are spatially correlated dielectric structures with unconventional optical properties. They can be transparent to long-wavelength radiation while at the same time have isotropic band gaps in another frequency range. This phenomenon raises fundamental questions concerning photon transport through disordered media. While optical transparency is robust against recurrent multiple scattering, little is known about other transport regimes like diffusive multiple scattering or Anderson localization. Here we investigate band gaps, and we report Anderson localization in two-dimensional stealthy HDPM using numerical simulations of the density of states and optical transport statistics. To establish a unified view, we propose a transport phase diagram. Our results show that, depending only on the degree of correlation, a dielectric material can transition from localization behavior to a bandgap crossing an intermediate regime dominated by tunneling between weakly coupled states.
We study the surface of a three-dimensional spin chiral $mathrm{Z}_2$ topological insulator (class CII), demonstrating the possibility of its localization. This arises through an interplay of interaction and statistically-symmetric disorder, that confines the gapless fermionic degrees of freedom to a network of one-dimensional helical domain-walls that can be localized. We identify two distinct regimes of this gapless insulating phase, a `clogged regime wherein the network localization is induced by its junctions between otherwise metallic helical domain-walls, and a `fully localized regime of localized domain-walls. The experimental signatures of these regimes are also discussed.