Do you want to publish a course? Click here

Towards a Realistic Model of Dark Atoms to Resolve the Hubble Tension

141   0   0.0 ( 0 )
 Added by Gordan Krnjaic
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has recently been shown that a subdominant hidden sector of atomic dark matter in the early universe can resolve the Hubble tension while maintaining good agreement with most precision cosmological observables. However, such a solution requires a hidden sector whose energy density ratios are the same as in our sector and whose recombination also takes place at redshift $z approx 1100$, which presents an apparent fine tuning. We introduce a realistic model of this scenario that dynamically enforces these coincidences without fine tuning. In our setup, the hidden sector contains an identical copy of Standard Model (SM) fields, but has a smaller Higgs vacuum expectation value (VEV) and a lower temperature. The baryon asymmetries and reheat temperatures in both sectors arise from the decays of an Affleck-Dine scalar field, whose branching ratios automatically ensure that the reheat temperature in each sector is proportional to the corresponding Higgs VEV. The same setup also naturally ensures that the Hydrogen binding energy in each sector is proportional to the corresponding VEV, so the ratios of binding energy to temperature are approximately equal in the two sectors. Furthermore, our scenario predicts a correlation between the SM/hidden temperature ratio and the atomic dark matter abundance and automatically yields values for these quantities that resolve the Hubble tension.



rate research

Read More

116 - Subhajit Ghosh , Rishi Khatri , 2019
New interactions of neutrinos can stop them from free streaming even after the weak interaction freeze-out. This results in a phase shift in the cosmic microwave background (CMB) acoustic peaks which can alleviate the Hubble tension. In addition, the perturbations in neutrinos do not decay away on horizon entry and contribute to metric perturbation enhancing the matter power spectrum. We demonstrate that this acoustic phase shift can be achieved using new interactions of standard left-handed neutrinos with dark matter without changing the number of effective relativistic degrees of freedom. Using Planck CMB and the WiggleZ galaxy survey $ (kle 0.12 h {rm Mpc}^{-1} ) $ data, we demonstrate that in this model the Hubble tension reduces to approximately $ 2.1 sigma$. Our model predicts potentially observable modifications of the CMB B-modes and the matter power spectrum that can be observed in future data sets.
We consider the inverse Seesaw scenario for neutrino masses with the approximate Lepton number symmetry broken dynamically by a scalar with Lepton number two. We show that the Majoron associated to the spontaneous symmetry breaking can alleviate the Hubble tension through its contribution to $Delta N_text{eff}$ and late decays to neutrinos. Among the additional fermionic states required for realizing the inverse Seesaw mechanism, sterile neutrinos at the keV-MeV scale can account for all the dark matter component of the Universe if produced via freeze-in from the decays of heavier degrees of freedom.
230 - Yuchao Gu , Maxim Khlopov , Lei Wu 2020
The recent measurements of the cosmological parameter $H_0$ from the direct local observations and the inferred value from the Cosmic Microwave Background show $sim 4 sigma$ discrepancy. This may indicate new physics beyond the standard $Lambda$CDM. We investigate the keV gravitino dark matter that has a small fraction of non-thermal component (e.g. from the late decay of NLSP bino) under various cosmological constraints. We find such a scenario is highly predictive and can be tested by searching for the dilepton plus missing energy events at the LHC. Besides, we also discuss its implication for Hubble tension, however, which can be reduced to $3sigma$ level marginally.
The majoron, a neutrinophilic pseudo-Goldstone boson conventionally arising in the context of neutrino mass models, can damp neutrino free-streaming and inject additional energy density into neutrinos prior to recombination. The combination of these effects for an eV-scale mass majoron has been shown to ameliorate the outstanding $H_0$ tension, however only if one introduces additional dark radiation at the level of $Delta N_{rm eff} sim 0.5$. We show here that models of low-scale leptogenesis can naturally source this dark radiation by generating a primordial population of majorons from the decays of GeV-scale sterile neutrinos in the early Universe. Using a posterior predictive distribution conditioned on Planck2018+BAO data, we show that the value of $H_0$ observed by the SH$_0$ES collaboration is expected to occur at the level of $sim 10%$ in the primordial majoron cosmology (to be compared with $sim 0.1%$ in the case of $Lambda$CDM). This insight provides an intriguing connection between the neutrino mass mechanism, the baryon asymmetry of the Universe, and the discrepant measurements of $H_0$.
The Hubble parameter inferred from cosmic microwave background observations is consistently lower than that from local measurements, which could hint towards new physics. Solutions to the Hubble tension typically require a sizable amount of extra radiation $Delta N^{}_{rm eff}$ during recombination. However, the amount of $Delta N^{}_{rm eff}$ in the early Universe is unavoidably constrained by Big Bang Nucleosynthesis (BBN), which causes problems for such solutions. We present a possibility to evade this problem by introducing neutrino self-interactions via a simple Majoron-like coupling. The scalar is slightly heavier than $1~{rm MeV}$ and allowed to be fully thermalized throughout the BBN era. The rise of neutrino temperature due to the entropy transfer via $phi to uoverline{ u}$ reactions compensates the effect of a large $Delta N^{}_{rm eff}$ on BBN. Values of $Delta N^{}_{rm eff}$ as large as $0.7$ are in this case compatible with BBN. We perform a fit to the parameter space of the model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا