Do you want to publish a course? Click here

The Complex-Step Derivative Approximation on Matrix Lie Groups

57   0   0.0 ( 0 )
 Added by Charles C. Cossette
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The complex-step derivative approximation is a numerical differentiation technique that can achieve analytical accuracy, to machine precision, with a single function evaluation. In this letter, the complex-step derivative approximation is extended to be compatible with elements of matrix Lie groups. As with the standard complex-step derivative, the method is still able to achieve analytical accuracy, up to machine precision, with a single function evaluation. Compared to a central-difference scheme, the proposed complex-step approach is shown to have superior accuracy. The approach is applied to two different pose estimation problems, and is able to recover the same results as an analytical method when available.



rate research

Read More

In this paper we propose a (non-linear) smoothing algorithm for group-affine observation systems, a recently introduced class of estimation problems on Lie groups that bear a particular structure. As most non-linear smoothing methods, the proposed algorithm is based on a maximum a posteriori estimator, determined by optimization. But owing to the specific properties of the considered class of problems, the involved linearizations are proved to have a form of independence with respect to the current estimates, leveraged to avoid (partially or sometimes totally) the need to relinearize. The method is validated on a robot localization example, both in simulations and on real experimental data.
87 - Francesca Tripaldi 2020
In this paper an alternative definition of the Rumin complex $(E_0^bullet,d_c)$ is presented, one that relies on a different concept of weights of forms. In this way, the Rumin complex can be constructed on any nilpotent Lie group equipped with a Carnot-Caratheodory metric. Moreover, this construction allows for the direct application of previous non-vanishing results of $ell^{q,p}$ cohomology to all nilpotent Lie groups that admit a positive grading.
107 - C.K. Li , Y.T. Poon , 2008
Let $S(A)$ denote the orbit of a complex or real matrix $A$ under a certain equivalence relation such as unitary similarity, unitary equivalence, unitary congruences etc. Efficient gradient-flow algorithms are constructed to determine the best approximation of a given matrix $A_0$ by the sum of matrices in $S(A_1), ..., S(A_N)$ in the sense of finding the Euclidean least-squares distance $$min {|X_1+ ... + X_N - A_0|: X_j in S(A_j), j = 1, >..., N}.$$ Connections of the results to different pure and applied areas are discussed.
393 - Vijay Kumar Patel 2021
The present article is devoting a numerical approach for solving a fractional partial differential equation (FPDE) arising from electromagnetic waves in dielectric media (EMWDM). The truncated Bernoulli and Hermite wavelets series with unknown coefficients have been used to approximate the solution in both the temporal and spatial variables. The basic idea for discretizing the FPDE is wavelet approximation based on the Bernoulli and Hermite wavelets operational matrices of integration and differentiation. The resulted system of a linear algebraic equation has been solved by the collocation method. Moreover, convergence and error analysis have been discussed. Finally, several numerical experiments with different fractional-order derivatives have been provided and compared with the exact analytical solutions to illustrate the accuracy and efficiency of the method.
In this paper, we give a simple formula for sectional curvatures on the general linear group, which is also valid for many other matrix groups. Similar formula is given for a reductive Lie group. We also discuss the relation between commuting matrices and zero sectional curvature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا