Do you want to publish a course? Click here

The Rumin complex on nilpotent Lie groups

88   0   0.0 ( 0 )
 Added by Francesca Tripaldi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper an alternative definition of the Rumin complex $(E_0^bullet,d_c)$ is presented, one that relies on a different concept of weights of forms. In this way, the Rumin complex can be constructed on any nilpotent Lie group equipped with a Carnot-Caratheodory metric. Moreover, this construction allows for the direct application of previous non-vanishing results of $ell^{q,p}$ cohomology to all nilpotent Lie groups that admit a positive grading.



rate research

Read More

We study the Ricci tensor of left-invariant pseudoriemannian metrics on Lie groups. For an appropriate class of Lie groups that contains nilpotent Lie groups, we introduce a variety with a natural $mathrm{GL}(n,mathbb{R})$ action, whose orbits parametrize Lie groups with a left-invariant metric; we show that the Ricci operator can be identified with the moment map relative to a natural symplectic structure. From this description we deduce that the Ricci operator is the derivative of the scalar curvature $s$ under gauge transformations of the metric, and show that Lie algebra derivations with nonzero trace obstruct the existence of Einstein metrics with $s eq0$. Using the notion of nice Lie algebra, we give the first example of a left-invariant Einstein metric with $s eq0$ on a nilpotent Lie group. We show that nilpotent Lie groups of dimension $leq 6$ do not admit such a metric, and a similar result holds in dimension $7$ with the extra assumption that the Lie algebra is nice.
We illustrate an algorithm to classify nice nilpotent Lie algebras of dimension $n$ up to a suitable notion of equivalence; applying the algorithm, we obtain complete listings for $nleq9$. On every nilpotent Lie algebra of dimension $leq 7$, we determine the number of inequivalent nice bases, which can be $0$, $1$, or $2$. We show that any nilpotent Lie algebra of dimension $n$ has at most countably many inequivalent nice bases.
We consider contact manifolds equipped with Carnot-Caratheodory metrics, and show that the Rumin complex is respected by Sobolev mappings: Pansu pullback induces a chain mapping between the smooth Rumin complex and the distributional Rumin complex. As a consequence, the Rumin flat complex -- the analog of the Whitney flat complex in the setting of contact manifolds -- is bilipschitz invariant. We also show that for Sobolev mappings between general Carnot groups, Pansu pullback induces a chain mapping when restricted to a certain differential ideal of the de Rham complex. Both results are applications of the Pullback Theorem from our previous paper.
94 - Jeffrey S. Case 2021
We give a new CR invariant treatment of the bigraded Rumin complex and related cohomology groups via differential forms. We also prove related Hodge decomposition theorems. Among many applications, we give a sharp upper bound on the dimension of the Kohn--Rossi groups $H^{0,q}(M^{2n+1})$, $1leq qleq n-1$, of a closed strictly pseudoconvex manifold with a contact form of nonnegative pseudohermitian Ricci curvature; we prove a sharp CR analogue of the Frolicher inequalities in terms of the second page of a natural spectral sequence; and we generalize the Lee class $mathcal{L}in H^1(M;mathscr{P})$ -- whose vanishing is necessary and sufficient for the existence of a pseudo-Einstein contact form -- to all nondegenerate orientable CR manifolds.
We prove that there do not exist quasi-isometric embeddings of connected nonabelian nilpotent Lie groups equipped with left invariant Riemannian metrics into a metric measure space satisfying the RCD(0,N), with N > 1. In fact, we can prove that a subRiemannian manifold whose generic degree of nonholonomy is not smaller than 2 can not be biLipschitzly embedded in any Banach space with the Radon-Nikodym property. We also get that every regular sub-Riemannian manifold do not satisfy the CD(K,N) with N > 1. We also prove that the subRiemannian manifold is infinitesimally Hilbert space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا