Do you want to publish a course? Click here

Invariant Smoothing on Lie Groups

69   0   0.0 ( 0 )
 Added by Paul Chauchat
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper we propose a (non-linear) smoothing algorithm for group-affine observation systems, a recently introduced class of estimation problems on Lie groups that bear a particular structure. As most non-linear smoothing methods, the proposed algorithm is based on a maximum a posteriori estimator, determined by optimization. But owing to the specific properties of the considered class of problems, the involved linearizations are proved to have a form of independence with respect to the current estimates, leveraged to avoid (partially or sometimes totally) the need to relinearize. The method is validated on a robot localization example, both in simulations and on real experimental data.



rate research

Read More

We are interested in the class, in the Elie Cartan sense, of left invariant forms on a Lie group. We construct the class of Lie algebras provided with a contact form and classify the frobeniusian Lie algebras up to a contraction. We also study forms which are invariant by a subgroup. We show that the simple group SL(2n,R) which doesnt admit left invariant contact form, yet admits a contact form which is invariant by a maximal compact subgroup. We determine also Pfaffian forms on the Heisenberg $3$-dimensional group invariant by a subgroup and obtain the Transport Equation.
199 - Gil Bor , Howard Jacobowitz 2019
The systematic study of CR manifolds originated in two pioneering 1932 papers of Elie Cartan. In the first, Cartan classifies all homogeneous CR 3-manifolds, the most well-known case of which is a one-parameter family of left-invariant CR structures on $mathrm{SU}_2 = S^3$, deforming the standard `spherical structure. In this paper, mostly expository, we illustrate and clarify Cartans results and methods by providing detailed classification results in modern language for four 3-dimensional Lie groups. In particular, we find that $mathrm{SL}_2(mathbb{R})$ admits two one-parameter families of left-invariant CR structures, called the elliptic and hyperbolic families, characterized by the incidence of the contact distribution with the null cone of the Killing metric. Low dimensional complex representations of $mathrm{SL}_2(mathbb{R})$ provide CR embedding or immersions of these structures. The same methods apply to all other three-dimensional Lie groups and are illustrated by descriptions of the left-invariant CR structures for $mathrm{SU}_2$, the Heisenberg group, and the Euclidean group.
The complex-step derivative approximation is a numerical differentiation technique that can achieve analytical accuracy, to machine precision, with a single function evaluation. In this letter, the complex-step derivative approximation is extended to be compatible with elements of matrix Lie groups. As with the standard complex-step derivative, the method is still able to achieve analytical accuracy, up to machine precision, with a single function evaluation. Compared to a central-difference scheme, the proposed complex-step approach is shown to have superior accuracy. The approach is applied to two different pose estimation problems, and is able to recover the same results as an analytical method when available.
A host algebra of a (possibly infinite dimensional) Lie group $G$ is a $C^*$-algebra whose representations are in one-to-one correspondence with certain continuous unitary representations $pi colon G to U(cH)$. In this paper we present a new approach to host algebras for infinite dimensional Lie groups which is based on smoothing operators, i.e., operators whose range is contained in the space $cH^infty$ of smooth vectors. Our first major result is a characterization of smoothing operators $A$ that in particular implies smoothness of the maps $pi^A colon G to B(cH), g mapsto pi(g)A$. The concept of a smoothing operator is particularly powerful for representations $(pi,cH)$ which are semibounded, i.e., there exists an element $x_0 ing$ for which all operators $iddpi(x)$, $x in g$, from the derived representation are uniformly bounded from above in some neighborhood of $x_0$. Our second main result asserts that this implies that $cH^infty$ coincides with the space of smooth vectors for the one-parameter group $pi_{x_0}(t) = pi(exp tx_0)$. We then show that natural types of smoothing operators can be used to obtain host algebras and that, for every metrizable Lie group, the class of semibounded representations can be covered completely by host algebras. In particular, it permits direct integral decompositions.
The Linearization Theorem for proper Lie groupoids organizes and generalizes several results for classic geometries. Despite the various approaches and recent works on the subject, the problem of understanding invariant linearization remains somehow open. We address it here, by first giving a counter-example to a previous conjecture, and then proving a sufficient criterion that uses compatible complete metrics and covers the case of proper group actions. We also show a partial converse that fixes and extends previous results in the literature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا