Do you want to publish a course? Click here

Violation of energy conditions and initial entropy bound in holographic Bjorken flow

106   0   0.0 ( 0 )
 Added by Romulo Rougemont
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We show that a Bjorken expanding strongly coupled $mathcal{N}=4$ Supersymmetric Yang-Mills plasma can violate the dominant and also the weak energy condition in its approach to hydrodynamics (even though the chosen initial data satisfy these constraints). This suggests that nontrivial quantum effects may be needed to describe the onset of hydrodynamic behavior in heavy-ion collisions. Also, we investigate whether there is an upper bound for the initial entropy of the plasma. We find numerical evidence for such a bound in our simulations and show that close to it the system evolves with approximately zero entropy production at early times, even though it is far from equilibrium.



rate research

Read More

115 - Renato Critelli 2018
In this paper we use the gauge/gravity duality to perform the first systematic study of the onset of hydrodynamic behavior in a hot and dense far-from-equilibrium strongly coupled relativistic fluid with a critical point. By employing a top-down holographic construction that stems from string theory, we numerically obtain the full nonlinear evolution of the far-from-equilibrium system undergoing a Bjorken expansion and address the following question: how does hydrodynamic behavior emerge in the vicinity of a critical point in the phase diagram? For the top-down holographic system analyzed in the present work, we find that the approach to hydrodynamics is strongly affected by the presence of the critical point: the closer the ratio between the chemical potential and the temperature is to its critical value, the longer it takes for the system to be well described by the equations of viscous hydrodynamics.
The 2D azimuth & rapidity structure of the two-particle correlations in relativistic A+A collisions is altered significantly by the presence of sharp inhomogeneities in superdense matter formed in such processes. The causality constraints enforce one to associate the long-range longitudinal correlations observed in a narrow angular interval, the so-called (soft) ridge, with peculiarities of the initial conditions of collision process. This studys objective is to analyze whether multiform initial tubular structures, undergoing the subsequent hydrodynamic evolution and gradual decoupling, can form the soft ridges. Motivated by the flux-tube scenarios, the initial energy density distribution contains the different numbers of high density tube-like boost-invariant inclusions that form a bumpy structure in the transverse plane. The influence of various structures of such initial conditions in the most central A+A events on the collective evolution of matter, resulting spectra, angular particle correlations and v_n-coefficients is studied in the framework of the HydroKinetic Model (HKM).
A simple approach is proposed allowing actual calculations of the preequilibrium dynamics in ultrarelativistic heavy-ion collisions to be performed for a far-from-equilibrium initial state. The method is based on the phenomenological macroscopic equations that describe the relaxation dynamics of the energy-momentum tensor and are motivated by Boltzmann kinetics in the relaxation-time approximation. It gives the possibility to match smoothly a nonthermal initial state to the hydrodynamics of the quark gluon plasma. The model contains two parameters, the duration of the prehydrodynamic stage and the initial value of the relaxation-time parameter, and allows one to assess the energy-momentum tensor at a supposed time of initialization of the hydrodynamics.
The two component Monte-Carlo Glauber model predicts a knee-like structure in the centrality dependence of elliptic flow $v_2$ in Uranium+Uranium collisions at $sqrt{s_{NN}}=193$ GeV. It also produces a strong anti-correlation between $v_2$ and $dN_{ch}/dy$ in the case of top ZDC events. However, none of these features have been observed in data. We address these discrepancies by including the effect of nucleon shadowing to the two component Monte-Carlo Glauber model. Apart from addressing successfully the above issues, we find that the nucleon shadow suppresses the event by event fluctuation of various quantities, e.g. $varepsilon_2$ which is in accordance with expectation from the dynamical models of initial condition based on gluon saturation physics.
We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the Color Glass Condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ~ 1/Q_s, where Q_s is the saturation scale) is carried by the beta-type flow of the initial classical gluon field, introduced by some of us earlier. beta^i ~ mu_1 nabla^i mu_2 - mu_2 nabla^i mu_1 (i=1,2) describes the rapidity-odd transverse energy flow and emerges from Gauss Law for gluon fields. Here mu_1 and mu_2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using AdS/CFT techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1/Q_s, is |dL_2/d eta| ~ R_A/Q_s^3 epsilon_0/2 at midrapidity, where R_A is the nuclear radius, and epsilon_0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g. for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا