No Arabic abstract
The two component Monte-Carlo Glauber model predicts a knee-like structure in the centrality dependence of elliptic flow $v_2$ in Uranium+Uranium collisions at $sqrt{s_{NN}}=193$ GeV. It also produces a strong anti-correlation between $v_2$ and $dN_{ch}/dy$ in the case of top ZDC events. However, none of these features have been observed in data. We address these discrepancies by including the effect of nucleon shadowing to the two component Monte-Carlo Glauber model. Apart from addressing successfully the above issues, we find that the nucleon shadow suppresses the event by event fluctuation of various quantities, e.g. $varepsilon_2$ which is in accordance with expectation from the dynamical models of initial condition based on gluon saturation physics.
The so called number of hadron-nucleus collisions n_coll(b) at impact parameter b, and its integral value N_coll, which are used to normalize the measured fractional cross section of a hard process, are calculated within the Glauber-Gribov theory including the effects of nucleon short-range correlations. The Gribov inelastic shadowing corrections are summed to all orders by employing the dipole representation. Numerical calculations are performed at the energies of the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC). We found that whereas the Gribov corrections generally increase the value of N_coll, the inclusion of nucleon correlations, acting in the opposite directions, decreases it by a comparable amount. The interplay of the two effects varies with the value of the impact parameter.
A simple approach is proposed allowing actual calculations of the preequilibrium dynamics in ultrarelativistic heavy-ion collisions to be performed for a far-from-equilibrium initial state. The method is based on the phenomenological macroscopic equations that describe the relaxation dynamics of the energy-momentum tensor and are motivated by Boltzmann kinetics in the relaxation-time approximation. It gives the possibility to match smoothly a nonthermal initial state to the hydrodynamics of the quark gluon plasma. The model contains two parameters, the duration of the prehydrodynamic stage and the initial value of the relaxation-time parameter, and allows one to assess the energy-momentum tensor at a supposed time of initialization of the hydrodynamics.
The 2D azimuth & rapidity structure of the two-particle correlations in relativistic A+A collisions is altered significantly by the presence of sharp inhomogeneities in superdense matter formed in such processes. The causality constraints enforce one to associate the long-range longitudinal correlations observed in a narrow angular interval, the so-called (soft) ridge, with peculiarities of the initial conditions of collision process. This studys objective is to analyze whether multiform initial tubular structures, undergoing the subsequent hydrodynamic evolution and gradual decoupling, can form the soft ridges. Motivated by the flux-tube scenarios, the initial energy density distribution contains the different numbers of high density tube-like boost-invariant inclusions that form a bumpy structure in the transverse plane. The influence of various structures of such initial conditions in the most central A+A events on the collective evolution of matter, resulting spectra, angular particle correlations and v_n-coefficients is studied in the framework of the HydroKinetic Model (HKM).
A current goal of relativistic heavy ion collisions experiments is the search for a Color Glass Condensate as the limiting state of QCD matter at very high density. In viscous hydrodynamics simulations, a standard Glauber initial condition leads to estimate $4pi eta/s sim 1$, while a Color Glass Condensate modeling leads to at least a factor of 2 larger $eta/s$. Within a kinetic theory approach based on a relativistic Boltzmann-like transport simulation, we point out that the out-of-equilibrium initial distribution proper of a Color Glass Condensate reduces the efficiency in building-up the elliptic flow. Our main result at RHIC energy is that the available data on $v_2$ are in agreement with a $4pi eta/s sim 1$ also for Color Glass Condensate initial conditions, opening the possibility to describe self-consistently also higher order flow, otherwise significantly underestimated, and to pursue further the search for signatures of the Color Glass Condensate.
Using a recursive solution of the Yang-Mills equation, we calculate analytic expressions for the gluon fields created in ultra-relativistic heavy ion collisions at small times $tau$. We have worked out explicit solutions for the fields and the energy momentum tensor up to 4th order in an expansion in $tau$. We generalize the McLerran-Venugopalan model to allow for a systematic treatment of averaged charge densities $mu^2$ that vary as a function of transverse coordinates. This allows us to calculate radial, elliptic and directed flow of gluon fields. Our results can serve as initial conditions for hydrodynamic simulations of nuclear collisions that include initial flow.