Do you want to publish a course? Click here

Initial Angular Momentum and Flow in High Energy Nuclear Collisions

93   0   0.0 ( 0 )
 Added by Rainer J. Fries
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the Color Glass Condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ~ 1/Q_s, where Q_s is the saturation scale) is carried by the beta-type flow of the initial classical gluon field, introduced by some of us earlier. beta^i ~ mu_1 nabla^i mu_2 - mu_2 nabla^i mu_1 (i=1,2) describes the rapidity-odd transverse energy flow and emerges from Gauss Law for gluon fields. Here mu_1 and mu_2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using AdS/CFT techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1/Q_s, is |dL_2/d eta| ~ R_A/Q_s^3 epsilon_0/2 at midrapidity, where R_A is the nuclear radius, and epsilon_0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g. for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.



rate research

Read More

We discuss the energy flow of the classical gluon fields created in collisions of heavy nuclei at collider energies. We show how the Yang-Mills analoga of Faradays Law and Gauss Law predict the initial gluon flux tubes to expand or bend. The resulting transverse and longitudinal structure of the Poynting vector field has a rich phenomenology. Besides the well known radial and elliptic flow in transverse direction, classical quantum chromodynamics predicts a rapidity-odd transverse flow that tilts the fireball for non-central collisions, and it implies a characteristic flow pattern for collisions of non-symmetric systems $A+B$. The rapidity-odd transverse flow translates into a directed particle flow $v_1$ which has been observed at RHIC and LHC. The global flow fields in heavy ion collisions could be a powerful check for the validity of classical Yang-Mill dynamics in high energy collisions.
Possible correlations of the global polarization of $Lambda$ hyperons with the angular momentum and transverse flow in the central region of colliding nuclei are studied based on refined estimate of the global polarization. Simulations of Au+Au collisions at collision energies $sqrt{s_{NN}}=$ 6-40 GeV are performed within the model of the three-fluid dynamics. Within the crossover and first-order-phase-transition scenarios this refined estimate quite satisfactorily reproduces the experimental STAR data. Hadronic scenario fails at high collision energies, $sqrt{s_{NN}}>$ 10 GeV, and even predicts opposite sign of the global polarization. It is found that the global polarization correlates with neither the angular momentum accumulated in the central region nor with directed and elliptic flow. At the same time we observed correlation between the angular momentum and directed flow in both their time and collision-energy dependence. These results suggest that, although initially the angular momentum is the driving force for the vortex generation, later the angular momentum and vortex motion become decorrelated in the midrapidity region. Then the midrapidity angular momentum is determined by the pattern of the directed flow and even becomes negative when the antiflow occurs. At the freeze-out stage, the dominant part of the participant angular momentum is accumulated in the fragmentation regions.
In heavy ion collisions, elliptic flow $v_2$ and radial flow, characterized by event-wise average transverse momentum $[p_{mathrm{T}}]$, are related to the shape and size of the overlap region, which are sensitive to the shape of colliding atomic nuclei. The Pearson correlation coefficient between $v_2$ and $[p_{mathrm{T}}]$, $rho_2$, was found to be particularly sensitive to the quadrupole deformation parameter $beta$ that is traditionally measured in low energy experiments. Built on earlier insight that the prolate deformation $beta>0$ reduces the $rho_2$ in ultra-central collisions (UCC), we show that the prolate deformation $beta<0$ enhances the value of $rho_2$. As $beta>0$ and $beta<0$ are the two extremes of triaxiality, the strength and sign of $v_2^2-[p_{mathrm{T}}]$ correlation can be used to provide valuable information on the triaxiality of the nucleus. Our study provide further arguments for using the hydrodynamic flow as a precision tool to directly image the deformation of the atomic nuclei at extremely short time scale ($<10^{-24}$s).
The short-range and tensor correlations associated to realistic nucleon-nucleon interactions induce a population of high-momentum components in the many-body nuclear wave function. We study the impact of such high-momentum components on bulk observables associated to isospin asymmetric matter. The kinetic part of the symmetry energy is strongly reduced by correlations when compared to the non-interacting case. The origin of this behavior is elucidated using realistic interactions with different short-range and tensor structures.
To assess the properties of the quark-gluon plasma formed in nuclear collisions, the Pearson correlation coefficient between flow harmonics and mean transverse momentum, $rholeft(v_{n}^{2},left[p_{mathrm{T}}right]right)$, reflecting the overlapped geometry of colliding atomic nuclei, is measured. $rholeft(v_{2}^{2},left[p_{mathrm{T}}right]right)$ was found to be particularly sensitive to the quadrupole deformation of the nuclei. We study the influence of the nuclear quadrupole deformation on $rholeft(v_{n}^{2},left[p_{mathrm{T}}right]right)$ in $rm{Au+Au}$ and $rm{U+U}$ collisions at RHIC energy using $rm{AMPT}$ transport model, and show that the $rholeft(v_{2}^{2},left[p_{mathrm{T}}right]right)$ is reduced by the prolate deformation $beta_2$ and turns to change sign in ultra-central collisions (UCC).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا