Do you want to publish a course? Click here

Understanding first order Raman spectra of boron carbides across the homogeneity range

116   0   0.0 ( 0 )
 Added by Guido Roma
 Publication date 2021
  fields Physics
and research's language is English
 Authors Guido Roma




Ask ChatGPT about the research

Boron carbide, a lightweight, high temperature material, has various applications as a structural material and as a neutron absorber. The large solubility range of carbon in boron, between $approx$ 9% and 20%, stems from the thermodynamical stability of three icosahedral phases at low temperature, with respective carbon atomic concentrations: 8.7% (B$_{10.5}$C, named OPO$_1$), 13.0 % (B$_{6.7}$C, named OPO$_2$), whose theoretical Raman spectra are still unknown, and 20% (B$_4$C), from which the nature of some of the Raman peaks are still debated. We report theoretical and experimental results of the first order, non-resonant, Raman spectrum of boron carbide. Density functional perturbation theory enables us to obtain the Raman spectra of the OPO$_1$ and OPO$_2$ phases, which are perfectly ordered structures with a complex crystalline motif of 414 atoms, due to charge compensation effects. Moreover, for the carbon-rich B$_4$C, with a simpler 15-atom unit cell, we study the influence of the low energy point defects and of their concentrations on the Raman spectrum, in connection with experiments, thus providing insights into the sensitivity of experime ntal spectra to sample preparation, experimental conditions and setup. In particular, this enables us to propose a new structure at 19.2% atomic carbon concentration, B$_{4.2}$C, that lies very close to the convex hull of boron carbide, on the carbon-rich side. This new phase, derived from what we name the 3+1 defect complex, helps in reconciling the experimentally observed Raman spectrum with the theory around 1000 cm$^{-1}$. Finally, we predict the intensity variations induced by the experimental geometry and quantitavely assess the localisation of bulk and defect vibrational modes and their character, with an analysis of chain and icosahedral modes.

rate research

Read More

104 - Akash Rai , Sheng Li , Hanlin Wu 2020
Boron arsenide (c-BAs) is at the forefront of research on ultrahigh thermal conductivity materials. We present a Raman scattering study of isotopically tailored cubic boron arsenide single crystals for 11 isotopic compositions spanning the range from nearly pure c-$^{10}$BAs to nearly pure c-$^{11}$BAs. Our results provide insights on the effects of strong mass disorder on optical phonons and the appearance of two-mode behavior in the Raman spectra of mixed crystals. Strong isotope disorder also relaxes the one-phonon Raman selection rules, resulting in disorder-activated Raman scattering by acoustic phonons.
Cu$_2$ZnSnS$_4$ is an earth-abundant photovoltaic absorber material predicted to provide a sustainable solution for commercial solar applications. One of the main limitations restricting its commercialization is the issue of cation disorder. Raman spectroscopy has been a sought after technique to characterize disorder in CZTS while a clear consensus between theoretical and experimental results is yet to be achieved. In the present study, via the virtual crystal approximation, we take into account the progressive nature of Cu-Zn disorder in CZTS: we obtain the phonon frequencies at zone-center within the density functional perturbation theory formalism, and further compute the Raman spectra for the disordered phases, achieving a consensus between theory and experiment. These calculations confirm the presence of complete disorder in Cu-Zn 2$a$, 2$c$ and 2$d$ Wyckoff sites. They also show that the Raman intensities of two prominent $A$ phonon modes characterized by motion of S atoms, also known to be experimentally significant, play a key role in understanding the nature of disorder in CZTS.
We present an textit{ab initio} study based on density-functional theory of first- and second-order Raman spectra of graphene-based materials with different stacking arrangements and numbers of layers. Going from monolayer and bilayer graphene to periodic graphitic structures, we investigate the behavior of the first-order G-band and of the second-order 2D-band excited by the same set of photon energies. The former turns out to be very similar in all considered graphene-based materials, while in the latter we find the signatures of individual structures. With a systematic analysis of the second-order Raman spectra at varying frenquency of the incident radiation, we monitor the Raman signal and identify the contributions from different phonon modes that are characteristic of each specific arrangement. Supported by good agreement with experimental findings and with previous theoretical studies based on alternative approaches, our results propose an effective tool to probe and analyze the fingerprints of graphene-based and other low-dimensional materials.
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiments on hexagonal Boron Nitride show a clear signature of a phase transition from hexagonal to wurtzite at ~ 13 GPa which is reversible on decompression. These results are contrasted with the pressure behavior of carbon nanotubes and graphite.
Single crystal samples of L-leucine, C6H13NO2, a fundamental aliphatic amino acid of the human body, have been studied by Raman spectroscopy at temperatures from 300 to 430 K over the spectral range from 50 to 3100 cm-1. A tentative assignment of all bands is given. For high temperatures, several modifications on the Raman spectra were observed at about 353 K, giving evidence that the L-leucine crystal undergoes a structural phase transition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا