No Arabic abstract
We present an textit{ab initio} study based on density-functional theory of first- and second-order Raman spectra of graphene-based materials with different stacking arrangements and numbers of layers. Going from monolayer and bilayer graphene to periodic graphitic structures, we investigate the behavior of the first-order G-band and of the second-order 2D-band excited by the same set of photon energies. The former turns out to be very similar in all considered graphene-based materials, while in the latter we find the signatures of individual structures. With a systematic analysis of the second-order Raman spectra at varying frenquency of the incident radiation, we monitor the Raman signal and identify the contributions from different phonon modes that are characteristic of each specific arrangement. Supported by good agreement with experimental findings and with previous theoretical studies based on alternative approaches, our results propose an effective tool to probe and analyze the fingerprints of graphene-based and other low-dimensional materials.
We have implemented a generic method, based on the 2n+1 theorem within density functional perturbation theory, to calculate the anharmonic scattering coefficients among three phonons with arbitrary wavevectors. The method is used to study the phonon broadening in graphite and graphene mono- and bi-layer. The broadening of the high-energy optical branches is highly nonuniform and presents a series of sudden steps and spikes. At finite temperature, the two linearly dispersive acoustic branches TA and LA of graphene have nonzero broadening for small wavevectors. The broadening in graphite and bi-layer graphene is, overall, very similar to the graphene one, the most remarkable feature being the broadening of the quasi acoustical ZO branch. Finally, we study the intrinsic anharmonic contribution to the thermal conductivity of the three systems, within the single mode relaxation time approximation. We find the conductance to be in good agreement with experimental data for the out-of-plane direction but to underestimate it by a factor 2 in-plane.
There has been a lot of excitement around the observation of superconductivity in twisted bilayer graphene, associated to flat bands close to the Fermi level. Such correlated electronic states also occur in multilayer rhombohedral stacked graphene (RG), which has been receiving increasing attention in the last years. In both natural and artificial samples however, multilayer stacked Bernal graphene (BG) occurs more frequently, making it desirable to determine what is their relative stability and under which conditions RG might be favored. Here, we study the energetics of BG and RG in bulk and also multilayer stacked graphene using first-principles calculations. It is shown that the electronic temperature, not accounted for in previous studies, plays a crucial role in determining which phase is preferred. We also show that the low energy states at room temperature consist of BG, RG and mixed BG-RG systems with a particular type of interface. Energies of all stacking sequences (SSs) are calculated for N = 12 layers, and an Ising model is used to fit them, which can be used for larger N as well. In this way, the ordering of low energy SSs can be determined and analyzed in terms of a few parameters. Our work clarifies inconsistent results in the literature, and sets the basis to studying the effect of external factors on the stability of multilayer graphene systems in first principles calculations.
Silicene and Graphene are similar and have $pi$-$pi^*$ bands. However band width in silicene is only a third of graphene. It results in a substantial increase in the ratio of Hubbard U to band width W, U/W $sim$ 0.5 in graphene to $sim 1$ in silicene. This enhancement, 2 dimensionality and phenomenology suggest a Mott insulator based ground state for silicene (G. Baskaran, arXiv:1309.2242). We lend support to the above proposal by showing, in an ab-initio calculation, that unlike graphene, silicene has two instabilities: i) a valence bond (Kekule) dimerization and ii) a weak two sublattice antiferromagnetic order. Presence of these instabilities, in the absence of fermi surface nesting, point to Mott localization, textit{within the frame work of ab-initio scheme}. Substrate dependent structural reconstructions seen experimentally in silicene are interpreted as generalized Kekule bond order.
Large scale synthesis of single layer graphene (SLG) by chemical vapor deposition (CVD) has received a lot of attention recently. However, CVD synthesis of AB stacked bi-layer graphene (BLG) is still a challenging work. Here we report synthesis of BLG homogeneously in large area by thermal CVD. The 2D Raman band of CVD BLG splits into four components, suggesting splitting of electronic bands due to strong interlayer coupling. The splitting of electronic bands in CVD BLG is further evidenced by the study of near infrared (NIR) absorption and carrier dynamics probed by transient absorption spectroscopy. Ultraviolet photoelectron spectroscopy invesigation also indiates CVD BLG possesses different electronic structures from those of CVD SLG. The growth mechanism of BLG is found to be related to catalystic activity of copper (Cu)surface, which is determined by purity of Cu foils employed in CVD process. Our work showsthat strongly coupled or even AB stacked BLG can be grown on Cu foils in large scale, which isof particular importance for device applications based on their split electronic bands
We report on Raman experiments performed on a single crystal MoTe$_2$ sample. The system belongs to the wide family of Transition Metal Dichalcogenides which includes several of the most interesting two dimensional materials for both basic and applied physics. Measurements were performed in the standard basal plane configuration, by placing the $ab$ plane of the crystal perpendicular to the wave vector $k_i$ of the incident beam to explore the in plane vibrational modes, and in the edge plane configuration with $k_i$ perpendicular to the crystal $c$ axis, thus mainly exciting out-of-plane modes. For both configurations we performed a polarization-dependent Raman study and we were able to provide a complete assignment of the observed first- and second-order Raman peaks fully exploiting the polarization selection rules. Present findings are in complete agreement with previous first-order Raman data whereas a thorough analysis of the second-order Raman bands, either in basal- or edge-plane configurations, provides new information and a precise assignment of these spectral structures. In particular, we have observed Raman active modes of the $M$ point of the Brillouin zone previously predicted by ab-initio calculations and ascribed to either combination or overtone but never previously measured.