Do you want to publish a course? Click here

Learning Feature Aggregation for Deep 3D Morphable Models

78   0   0.0 ( 0 )
 Added by Zhixiang Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

3D morphable models are widely used for the shape representation of an object class in computer vision and graphics applications. In this work, we focus on deep 3D morphable models that directly apply deep learning on 3D mesh data with a hierarchical structure to capture information at multiple scales. While great efforts have been made to design the convolution operator, how to best aggregate vertex features across hierarchical levels deserves further attention. In contrast to resorting to mesh decimation, we propose an attention based module to learn mapping matrices for better feature aggregation across hierarchical levels. Specifically, the mapping matrices are generated by a compatibility function of the keys and queries. The keys and queries are trainable variables, learned by optimizing the target objective, and shared by all data samples of the same object class. Our proposed module can be used as a train-only drop-in replacement for the feature aggregation in existing architectures for both downsampling and upsampling. Our experiments show that through the end-to-end training of the mapping matrices, we achieve state-of-the-art results on a variety of 3D shape datasets in comparison to existing morphable models.



rate research

Read More

Scene parsing from images is a fundamental yet challenging problem in visual content understanding. In this dense prediction task, the parsing model assigns every pixel to a categorical label, which requires the contextual information of adjacent image patches. So the challenge for this learning task is to simultaneously describe the geometric and semantic properties of objects or a scene. In this paper, we explore the effective use of multi-layer feature outputs of the deep parsing networks for spatial-semantic consistency by designing a novel feature aggregation module to generate the appropriate global representation prior, to improve the discriminative power of features. The proposed module can auto-select the intermediate visual features to correlate the spatial and semantic information. At the same time, the multiple skip connections form a strong supervision, making the deep parsing network easy to train. Extensive experiments on four public scene parsing datasets prove that the deep parsing network equipped with the proposed feature aggregation module can achieve very promising results.
Most 3D face reconstruction methods rely on 3D morphable models, which disentangle the space of facial deformations into identity geometry, expressions and skin reflectance. These models are typically learned from a limited number of 3D scans and thus do not generalize well across different identities and expressions. We present the first approach to learn complete 3D models of face identity geometry, albedo and expression just from images and videos. The virtually endless collection of such data, in combination with our self-supervised learning-based approach allows for learning face models that generalize beyond the span of existing approaches. Our network design and loss functions ensure a disentangled parameterization of not only identity and albedo, but also, for the first time, an expression basis. Our method also allows for in-the-wild monocular reconstruction at test time. We show that our learned models better generalize and lead to higher quality image-based reconstructions than existing approaches.
Many recent works have reconstructed distinctive 3D face shapes by aggregating shape parameters of the same identity and separating those of different people based on parametric models (e.g., 3D morphable models (3DMMs)). However, despite the high accuracy in the face recognition task using these shape parameters, the visual discrimination of face shapes reconstructed from those parameters is unsatisfactory. The following research question has not been answered in previous works: Do discriminative shape parameters guarantee visual discrimination in represented 3D face shapes? This paper analyzes the relationship between shape parameters and reconstructed shape geometry and proposes a novel shape identity-aware regularization(SIR) loss for shape parameters, aiming at increasing discriminability in both the shape parameter and shape geometry domains. Moreover, to cope with the lack of training data containing both landmark and identity annotations, we propose a network structure and an associated training strategy to leverage mixed data containing either identity or landmark labels. We compare our method with existing methods in terms of the reconstruction error, visual distinguishability, and face recognition accuracy of the shape parameters. Experimental results show that our method outperforms the state-of-the-art methods.
The 3D shapes of faces are well known to be discriminative. Yet despite this, they are rarely used for face recognition and always under controlled viewing conditions. We claim that this is a symptom of a serious but often overlooked problem with existing methods for single view 3D face reconstruction: when applied in the wild, their 3D estimates are either unstable and change for different photos of the same subject or they are over-regularized and generic. In response, we describe a robust method for regressing discriminative 3D morphable face models (3DMM). We use a convolutional neural network (CNN) to regress 3DMM shape and texture parameters directly from an input photo. We overcome the shortage of training data required for this purpose by offering a method for generating huge numbers of labeled examples. The 3D estimates produced by our CNN surpass state of the art accuracy on the MICC data set. Coupled with a 3D-3D face matching pipeline, we show the first competitive face recognition results on the LFW, YTF and IJB-A benchmarks using 3D face shapes as representations, rather than the opaque deep feature vectors used by other modern systems.
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا