No Arabic abstract
Many recent works have reconstructed distinctive 3D face shapes by aggregating shape parameters of the same identity and separating those of different people based on parametric models (e.g., 3D morphable models (3DMMs)). However, despite the high accuracy in the face recognition task using these shape parameters, the visual discrimination of face shapes reconstructed from those parameters is unsatisfactory. The following research question has not been answered in previous works: Do discriminative shape parameters guarantee visual discrimination in represented 3D face shapes? This paper analyzes the relationship between shape parameters and reconstructed shape geometry and proposes a novel shape identity-aware regularization(SIR) loss for shape parameters, aiming at increasing discriminability in both the shape parameter and shape geometry domains. Moreover, to cope with the lack of training data containing both landmark and identity annotations, we propose a network structure and an associated training strategy to leverage mixed data containing either identity or landmark labels. We compare our method with existing methods in terms of the reconstruction error, visual distinguishability, and face recognition accuracy of the shape parameters. Experimental results show that our method outperforms the state-of-the-art methods.
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.
We propose a method for constructing generative models of 3D objects from a single 3D mesh. Our method produces a 3D morphable model that represents shape and albedo in terms of Gaussian processes. We define the shape deformations in physical (3D) space and the albedo deformations as a combination of physical-space and color-space deformations. Whereas previous approaches have typically built 3D morphable models from multiple high-quality 3D scans through principal component analysis, we build 3D morphable models from a single scan or template. We demonstrate the utility of these models in the domain of face modeling through inverse rendering and registration tasks. Specifically, we show that our approach can be used to perform face recognition using only a single 3D scan (one scan total, not one per person), and further demonstrate how multiple scans can be incorporated to improve performance without requiring dense correspondence. Our approach enables the synthesis of 3D morphable models for 3D object categories where dense correspondence between multiple scans is unavailable. We demonstrate this by constructing additional 3D morphable models for fish and birds and use them to perform simple inverse rendering tasks.
Most 3D face reconstruction methods rely on 3D morphable models, which disentangle the space of facial deformations into identity geometry, expressions and skin reflectance. These models are typically learned from a limited number of 3D scans and thus do not generalize well across different identities and expressions. We present the first approach to learn complete 3D models of face identity geometry, albedo and expression just from images and videos. The virtually endless collection of such data, in combination with our self-supervised learning-based approach allows for learning face models that generalize beyond the span of existing approaches. Our network design and loss functions ensure a disentangled parameterization of not only identity and albedo, but also, for the first time, an expression basis. Our method also allows for in-the-wild monocular reconstruction at test time. We show that our learned models better generalize and lead to higher quality image-based reconstructions than existing approaches.
Parametric 3D models have enabled a wide variety of tasks in computer graphics and vision, such as modeling human bodies, faces, and hands. However, the construction of these parametric models is often tedious, as it requires heavy manual tweaking, and they struggle to represent additional complexity and details such as wrinkles or clothing. To this end, we propose Neural Parametric Models (NPMs), a novel, learned alternative to traditional, parametric 3D models, which does not require hand-crafted, object-specific constraints. In particular, we learn to disentangle 4D dynamics into latent-space representations of shape and pose, leveraging the flexibility of recent developments in learned implicit functions. Crucially, once learned, our neural parametric models of shape and pose enable optimization over the learned spaces to fit to new observations, similar to the fitting of a traditional parametric model, e.g., SMPL. This enables NPMs to achieve a significantly more accurate and detailed representation of observed deformable sequences. We show that NPMs improve notably over both parametric and non-parametric state of the art in reconstruction and tracking of monocular depth sequences of clothed humans and hands. Latent-space interpolation as well as shape/pose transfer experiments further demonstrate the usefulness of NPMs. Code is publicly available at https://pablopalafox.github.io/npms.
The paper presents a dictionary integration algorithm using 3D morphable face models (3DMM) for pose-invariant collaborative-representation-based face classification. To this end, we first fit a 3DMM to the 2D face images of a dictionary to reconstruct the 3D shape and texture of each image. The 3D faces are used to render a number of virtual 2D face images with arbitrary pose variations to augment the training data, by merging the original and rendered virtual samples to create an extended dictionary. Second, to reduce the information redundancy of the extended dictionary and improve the sparsity of reconstruction coefficient vectors using collaborative-representation-based classification (CRC), we exploit an on-line elimination scheme to optimise the extended dictionary by identifying the most representative training samples for a given query. The final goal is to perform pose-invariant face classification using the proposed dictionary integration method and the on-line pruning strategy under the CRC framework. Experimental results obtained for a set of well-known face datasets demonstrate the merits of the proposed method, especially its robustness to pose variations.