Do you want to publish a course? Click here

Does the Goal Matter? Emotion Recognition Tasks Can Change the Social Value of Facial Mimicry towards Artificial Agents

308   0   0.0 ( 0 )
 Added by Giulia Perugia Dr.
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we present a study aimed at understanding whether the embodiment and humanlikeness of an artificial agent can affect peoples spontaneous and instructed mimicry of its facial expressions. The study followed a mixed experimental design and revolved around an emotion recognition task. Participants were randomly assigned to one level of humanlikeness (between-subject variable: humanlike, characterlike, or morph facial texture of the artificial agents) and observed the facial expressions displayed by a human (control) and three artificial agents differing in embodiment (within-subject variable: video-recorded robot, physical robot, and virtual agent). To study both spontaneous and instructed facial mimicry, we divided the experimental sessions into two phases. In the first phase, we asked participants to observe and recognize the emotions displayed by the agents. In the second phase, we asked them to look at the agents facial expressions, replicate their dynamics as closely as possible, and then identify the observed emotions. In both cases, we assessed participants facial expressions with an automated Action Unit (AU) intensity detector. Contrary to our hypotheses, our results disclose that the agent that was perceived as the least uncanny, and most anthropomorphic, likable, and co-present, was the one spontaneously mimicked the least. Moreover, they show that instructed facial mimicry negatively predicts spontaneous facial mimicry. Further exploratory analyses revealed that spontaneous facial mimicry appeared when participants were less certain of the emotion they recognized. Hence, we postulate that an emotion recognition goal can flip the social value of facial mimicry as it transforms a likable artificial agent into a distractor.



rate research

Read More

Negotiation is a complex social interaction that encapsulates emotional encounters in human decision-making. Virtual agents that can negotiate with humans are useful in pedagogy and conversational AI. To advance the development of such agents, we explore the prediction of two important subjective goals in a negotiation - outcome satisfaction and partner perception. Specifically, we analyze the extent to which emotion attributes extracted from the negotiation help in the prediction, above and beyond the individual difference variables. We focus on a recent dataset in chat-based negotiations, grounded in a realistic camping scenario. We study three degrees of emotion dimensions - emoticons, lexical, and contextual by leveraging affective lexicons and a state-of-the-art deep learning architecture. Our insights will be helpful in designing adaptive negotiation agents that interact through realistic communication interfaces.
We examine the utility of implicit behavioral cues in the form of EEG brain signals and eye movements for gender recognition (GR) and emotion recognition (ER). Specifically, the examined cues are acquired via low-cost, off-the-shelf sensors. We asked 28 viewers (14 female) to recognize emotions from unoccluded (no mask) as well as partially occluded (eye and mouth masked) emotive faces. Obtained experimental results reveal that (a) reliable GR and ER is achievable with EEG and eye features, (b) differential cognitive processing especially for negative emotions is observed for males and females and (c) some of these cognitive differences manifest under partial face occlusion, as typified by the eye and mouth mask conditions.
A smart home is grounded on the sensors that endure automation, safety, and structural integration. The security mechanism in digital setup possesses vibrant prominence and the biometric facial recognition system is novel addition to accrue the smart home features. Understanding the implementation of such technology is the outcome of user behavior modeling. However, there is the paucity of empirical research that explains the role of cognitive, functional, and social aspects of end-users acceptance behavior towards biometric facial recognition systems at homes. Therefore, a causal research survey was conducted to comprehend the behavioral intention towards the use of a biometric facial recognition system. Technology Acceptance Model (TAM)was implied with Perceived System Quality (PSQ) and Social Influence (SI)to hypothesize the conceptual framework. Data was collected from 475respondents through online questionnaires. Structural Equation Modeling(SEM) and Artificial Neural Network (ANN) were employed to analyze the surveyed data. The results showed that all the variables of the proposed framework significantly affected the behavioral intention to use the system. The PSQ appeared as the noteworthy predictor towards biometric facial recognition system usability through regression and sensitivity analyses. A multi-analytical approach towards understanding the technology user behavior will support the efficient decision-making process in Human-centric computing.
Human emotions can be inferred from facial expressions. However, the annotations of facial expressions are often highly noisy in common emotion coding models, including categorical and dimensional ones. To reduce human labelling effort on multi-task labels, we introduce a new problem of facial emotion recognition with noisy multi-task annotations. For this new problem, we suggest a formulation from the point of joint distribution match view, which aims at learning more reliable correlations among raw facial images and multi-task labels, resulting in the reduction of noise influence. In our formulation, we exploit a new method to enable the emotion prediction and the joint distribution learning in a unified adversarial learning game. Evaluation throughout extensive experiments studies the real setups of the suggested new problem, as well as the clear superiority of the proposed method over the state-of-the-art competing methods on either the synthetic noisy labeled CIFAR-10 or practical noisy multi-task labeled RAF and AffectNet. The code is available at https://github.com/sanweiliti/noisyFER.
Recently, increasing attention has been directed to the study of the speech emotion recognition, in which global acoustic features of an utterance are mostly used to eliminate the content differences. However, the expression of speech emotion is a dynamic process, which is reflected through dynamic durations, energies, and some other prosodic information when one speaks. In this paper, a novel local dynamic pitch probability distribution feature, which is obtained by drawing the histogram, is proposed to improve the accuracy of speech emotion recognition. Compared with most of the previous works using global features, the proposed method takes advantage of the local dynamic information conveyed by the emotional speech. Several experiments on Berlin Database of Emotional Speech are conducted to verify the effectiveness of the proposed method. The experimental results demonstrate that the local dynamic information obtained with the proposed method is more effective for speech emotion recognition than the traditional global features.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا