No Arabic abstract
A smart home is grounded on the sensors that endure automation, safety, and structural integration. The security mechanism in digital setup possesses vibrant prominence and the biometric facial recognition system is novel addition to accrue the smart home features. Understanding the implementation of such technology is the outcome of user behavior modeling. However, there is the paucity of empirical research that explains the role of cognitive, functional, and social aspects of end-users acceptance behavior towards biometric facial recognition systems at homes. Therefore, a causal research survey was conducted to comprehend the behavioral intention towards the use of a biometric facial recognition system. Technology Acceptance Model (TAM)was implied with Perceived System Quality (PSQ) and Social Influence (SI)to hypothesize the conceptual framework. Data was collected from 475respondents through online questionnaires. Structural Equation Modeling(SEM) and Artificial Neural Network (ANN) were employed to analyze the surveyed data. The results showed that all the variables of the proposed framework significantly affected the behavioral intention to use the system. The PSQ appeared as the noteworthy predictor towards biometric facial recognition system usability through regression and sensitivity analyses. A multi-analytical approach towards understanding the technology user behavior will support the efficient decision-making process in Human-centric computing.
This work explores the utility of implicit behavioral cues, namely, Electroencephalogram (EEG) signals and eye movements for gender recognition (GR) and emotion recognition (ER) from psychophysical behavior. Specifically, the examined cues are acquired via low-cost, off-the-shelf sensors. 28 users (14 male) recognized emotions from unoccluded (no mask) and partially occluded (eye or mouth masked) emotive faces; their EEG responses contained gender-specific differences, while their eye movements were characteristic of the perceived facial emotions. Experimental results reveal that (a) reliable GR and ER is achievable with EEG and eye features, (b) differential cognitive processing of negative emotions is observed for females and (c) eye gaze-based gender differences manifest under partial face occlusion, as typified by the eye and mouth mask conditions.
This paper proposes to expand the visual understanding capacity of computers by helping it recognize human sign language more efficiently. This is carried out through recognition of facial expressions, which accompany the hand signs used in this language. This paper specially focuses on the popular Brazilian sign language (LIBRAS). While classifying different hand signs into their respective word meanings has already seen much literature dedicated to it, the emotions or intention with which the words are expressed havent primarily been taken into consideration. As from our normal human experience, words expressed with different emotions or mood can have completely different meanings attached to it. Lending computers the ability of classifying these facial expressions, can help add another level of deep understanding of what the deaf person exactly wants to communicate. The proposed idea is implemented through a deep neural network having a customized architecture. This helps learning specific patterns in individual expressions much better as compared to a generic approach. With an overall accuracy of 98.04%, the implemented deep network performs excellently well and thus is fit to be used in any given practical scenario.
In this paper, we present a study aimed at understanding whether the embodiment and humanlikeness of an artificial agent can affect peoples spontaneous and instructed mimicry of its facial expressions. The study followed a mixed experimental design and revolved around an emotion recognition task. Participants were randomly assigned to one level of humanlikeness (between-subject variable: humanlike, characterlike, or morph facial texture of the artificial agents) and observed the facial expressions displayed by a human (control) and three artificial agents differing in embodiment (within-subject variable: video-recorded robot, physical robot, and virtual agent). To study both spontaneous and instructed facial mimicry, we divided the experimental sessions into two phases. In the first phase, we asked participants to observe and recognize the emotions displayed by the agents. In the second phase, we asked them to look at the agents facial expressions, replicate their dynamics as closely as possible, and then identify the observed emotions. In both cases, we assessed participants facial expressions with an automated Action Unit (AU) intensity detector. Contrary to our hypotheses, our results disclose that the agent that was perceived as the least uncanny, and most anthropomorphic, likable, and co-present, was the one spontaneously mimicked the least. Moreover, they show that instructed facial mimicry negatively predicts spontaneous facial mimicry. Further exploratory analyses revealed that spontaneous facial mimicry appeared when participants were less certain of the emotion they recognized. Hence, we postulate that an emotion recognition goal can flip the social value of facial mimicry as it transforms a likable artificial agent into a distractor.
This paper describes the proposed methodology, data used and the results of our participation in the ChallengeTrack 2 (Expr Challenge Track) of the Affective Behavior Analysis in-the-wild (ABAW) Competition 2020. In this competition, we have used a proposed deep convolutional neural network (CNN) model to perform automatic facial expression recognition (AFER) on the given dataset. Our proposed model has achieved an accuracy of 50.77% and an F1 score of 29.16% on the validation set.
An important application of interactive machine learning is extending or amplifying the cognitive and physical capabilities of a human. To accomplish this, machines need to learn about their human users intentions and adapt to their preferences. In most current research, a user has conveyed preferences to a machine using explicit corrective or instructive feedback; explicit feedback imposes a cognitive load on the user and is expensive in terms of human effort. The primary objective of the current work is to demonstrate that a learning agent can reduce the amount of explicit feedback required for adapting to the users preferences pertaining to a task by learning to perceive a value of its behavior from the human user, particularly from the users facial expressions---we call this face valuing. We empirically evaluate face valuing on a grip selection task. Our preliminary results suggest that an agent can quickly adapt to a users changing preferences with minimal explicit feedback by learning a value function that maps facial features extracted from a camera image to expected future reward. We believe that an agent learning to perceive a value from the body language of its human user is complementary to existing interactive machine learning approaches and will help in creating successful human-machine interactive applications.