Do you want to publish a course? Click here

Towards Emotion-Aware Agents For Negotiation Dialogues

86   0   0.0 ( 0 )
 Added by Kushal Chawla
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Negotiation is a complex social interaction that encapsulates emotional encounters in human decision-making. Virtual agents that can negotiate with humans are useful in pedagogy and conversational AI. To advance the development of such agents, we explore the prediction of two important subjective goals in a negotiation - outcome satisfaction and partner perception. Specifically, we analyze the extent to which emotion attributes extracted from the negotiation help in the prediction, above and beyond the individual difference variables. We focus on a recent dataset in chat-based negotiations, grounded in a realistic camping scenario. We study three degrees of emotion dimensions - emoticons, lexical, and contextual by leveraging affective lexicons and a state-of-the-art deep learning architecture. Our insights will be helpful in designing adaptive negotiation agents that interact through realistic communication interfaces.



rate research

Read More

Recently, increasing attention has been directed to the study of the speech emotion recognition, in which global acoustic features of an utterance are mostly used to eliminate the content differences. However, the expression of speech emotion is a dynamic process, which is reflected through dynamic durations, energies, and some other prosodic information when one speaks. In this paper, a novel local dynamic pitch probability distribution feature, which is obtained by drawing the histogram, is proposed to improve the accuracy of speech emotion recognition. Compared with most of the previous works using global features, the proposed method takes advantage of the local dynamic information conveyed by the emotional speech. Several experiments on Berlin Database of Emotional Speech are conducted to verify the effectiveness of the proposed method. The experimental results demonstrate that the local dynamic information obtained with the proposed method is more effective for speech emotion recognition than the traditional global features.
As AI continues to advance, human-AI teams are inevitable. However, progress in AI is routinely measured in isolation, without a human in the loop. It is crucial to benchmark progress in AI, not just in isolation, but also in terms of how it translates to helping humans perform certain tasks, i.e., the performance of human-AI teams. In this work, we design a cooperative game - GuessWhich - to measure human-AI team performance in the specific context of the AI being a visual conversational agent. GuessWhich involves live interaction between the human and the AI. The AI, which we call ALICE, is provided an image which is unseen by the human. Following a brief description of the image, the human questions ALICE about this secret image to identify it from a fixed pool of images. We measure performance of the human-ALICE team by the number of guesses it takes the human to correctly identify the secret image after a fixed number of dialog rounds with ALICE. We compare performance of the human-ALICE teams for t
To successfully negotiate a deal, it is not enough to communicate fluently: pragmatic planning of persuasive negotiation strategies is essential. While modern dialogue agents excel at generating fluent sentences, they still lack pragmatic grounding and cannot reason strategically. We present DialoGraph, a negotiation system that incorporates pragmatic strategies in a negotiation dialogue using graph neural networks. DialoGraph explicitly incorporates dependencies between sequences of strategies to enable improved and interpretable prediction of next optimal strategies, given the dialogue context. Our graph-based method outperforms prior state-of-the-art negotiation models both in the accuracy of strategy/dialogue act prediction and in the quality of downstream dialogue response generation. We qualitatively show further benefits of learned strategy-graphs in providing explicit associations between effective negotiation strategies over the course of the dialogue, leading to interpretable and strategic dialogues.
158 - Vivian Lai , Han Liu , Chenhao Tan 2020
To support human decision making with machine learning models, we often need to elucidate patterns embedded in the models that are unsalient, unknown, or counterintuitive to humans. While existing approaches focus on explaining machine predictions with real-time assistance, we explore model-driven tutorials to help humans understand these patterns in a training phase. We consider both tutorials with guidelines from scientific papers, analogous to current practices of science communication, and automatically selected examples from training data with explanations. We use deceptive review detection as a testbed and conduct large-scale, randomized human-subject experiments to examine the effectiveness of such tutorials. We find that tutorials indeed improve human performance, with and without real-time assistance. In particular, although deep learning provides superior predictive performance than simple models, tutorials and explanations from simple models are more useful to humans. Our work suggests future directions for human-centered tutorials and explanations towards a synergy between humans and AI.
In this paper, we present a study aimed at understanding whether the embodiment and humanlikeness of an artificial agent can affect peoples spontaneous and instructed mimicry of its facial expressions. The study followed a mixed experimental design and revolved around an emotion recognition task. Participants were randomly assigned to one level of humanlikeness (between-subject variable: humanlike, characterlike, or morph facial texture of the artificial agents) and observed the facial expressions displayed by a human (control) and three artificial agents differing in embodiment (within-subject variable: video-recorded robot, physical robot, and virtual agent). To study both spontaneous and instructed facial mimicry, we divided the experimental sessions into two phases. In the first phase, we asked participants to observe and recognize the emotions displayed by the agents. In the second phase, we asked them to look at the agents facial expressions, replicate their dynamics as closely as possible, and then identify the observed emotions. In both cases, we assessed participants facial expressions with an automated Action Unit (AU) intensity detector. Contrary to our hypotheses, our results disclose that the agent that was perceived as the least uncanny, and most anthropomorphic, likable, and co-present, was the one spontaneously mimicked the least. Moreover, they show that instructed facial mimicry negatively predicts spontaneous facial mimicry. Further exploratory analyses revealed that spontaneous facial mimicry appeared when participants were less certain of the emotion they recognized. Hence, we postulate that an emotion recognition goal can flip the social value of facial mimicry as it transforms a likable artificial agent into a distractor.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا