Do you want to publish a course? Click here

Superradiance of molecular nitrogen ions in strong laser fields

357   0   0.0 ( 0 )
 Added by Quanjun Wang
 Publication date 2021
  fields Physics
and research's language is English
 Authors Q. Wang




Ask ChatGPT about the research

We perform a combined theoretical and experimental investigation of the superradiance in the quantum coherent system generated by strong laser fields. The semiclassical theory of superradiance that includes the superradiant temporal profile, character duration, time delay, intensity is derived. The experimental data and theoretical predictions of 391-nm forward emission as a function of nitrogen gas pressure are compared and show good agreement. Our results not only demonstrate that the time-delayed optical amplification inside the molecular nitrogen ions is superradiance, but also reveal the quantum optical properties of strong-field physics.

rate research

Read More

Quantum coherence in quantum optics is an essential part of optical information processing and light manipulation. Alkali metal vapors, despite the numerous shortcomings, are traditionally used in quantum optics as a working medium due to convenient near-infrared excitation, strong dipole transitions and long-lived coherence. Here, we proposed and experimentally demonstrated photon retention and subsequent re-emittance with the quantum coherence in a system of coherently excited molecular nitrogen ions (N2+) which are produced using a strong 800 nm femtosecond laser pulse. Such photon retention, facilitated by quantum coherence, keeps releasing directly-unmeasurable coherent photons for tens of picoseconds, but is able to be read-out by a time-delayed femtosecond pulse centered at 1580 nm via two-photon resonant absorption, resulting in a strong radiation at 329.3 nm. We reveal a pivotal role of the excited-state population to transmit such extremely weak re-emitted photons in this system. This new finding unveils the nature of the coherent quantum control in N2+ for the potential platform for optical information storage in the remote atmosphere, and facilitates further exploration of fundamental interactions in the quantum optical platform with strong-field ionized molecules.
Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schrodinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2020)). These quantum optical states have been proven to be very manageable as, by modifying the conditions under which harmonics are generated, one can interplay between $textit{kitten}$ and $textit{genuine cat}$ states. Here, we demonstrate that this method can also be used for the development of new schemes towards the creation of optical Schrodinger cat states, consisting of the superposition of three distinct coherent states. Apart from the interest these kind of states have on their own, we additionally propose a scheme for using them towards the generation of large cat states involving the sum of two different coherent states. The quantum properties of the obtained superpositions aim to significantly increase the applicability of optical Schrodinger cat states for quantum technology and quantum information processing.
Singly ionized nitrogen molecules in ambient air pumped by near-infrared femtosecond laser give rise to superradiant emission. Here we demonstrate coherent control of this superradiance by injecting a pair of resonant seeding pulses inside the nitrogen gas plasma. Strong modulation of the 391.4 nm superradiance with a period of 1.3 fs is observed when the delay between the two seeding pulses are finely tuned, pinpointing the essential role of macroscopic coherence in this lasing process. Based on this time-resolved method, the complex temporal evolution of the macroscopic coherence between two involved energy levels has been experimentally revealed, which is found to last for around 10 picoseconds in the low gas pressure range. These observations provide a new level of control on the air lasing based on nitrogen ions, which can find potential applications in optical remote sensing.
We report on an investigation of simultaneous generation of several narrow-bandwidth laser-like coherent emissions from nitrogen molecular ions ( ) produced in intense mid-infrared laser fields. With systematic examinations on the dependences of coherent emissions on gas pressure as well as several laser parameters including laser intensity, polarization and wavelength of the pump laser pulses, we reveal that the multiple coherent emission lines generated in originate from a series of nonlinear processes beginning with four-wave mixing, followed with stimulated Raman scattering. Our analyses further show that the observed nonlinear processes are greatly enhanced at the resonant wavelengths, giving rise to high conversion efficiencies from the infrared pump laser pulses to the coherent emission lines near the transition wavelengths between the different vibrational energy levels of ground X and that of the excited B states.
The alignment dependence of the ionization behavior of H$_2$ exposed to intense ultrashort laser pulses is investigated on the basis of solutions of the full time-dependent Schrodinger equation within the fixed-nuclei and dipole approximation. The total ionization yields as well as the energy-resolved electron spectra have been calculated for a parallel and a perpendicular orientation of the molecular axis with respect to the polarization axis of linear polarized laser pulses. For most, but not all considered laser peak intensities the parallel aligned molecules are easier to ionize. Furthermore, it is shown that the velocity formulation of the strong-field approximation predicts a simple interference pattern for the ratio of the energy-resolved electron spectra obtained for the two orientations, but this is not confirmed by the full ab initio results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا