Do you want to publish a course? Click here

STDP and the distribution of preferred phases in the whisker system

57   0   0.0 ( 0 )
 Added by Nimrod Sherf
 Publication date 2021
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Rats and mice use their whiskers to probe the environment. By rhythmically swiping their whiskers back and forth they can detect the existence of an object, locate it, and identify its texture. Localization can be accomplished by inferring the position of the whisker. Rhythmic neurons that track the phase of the whisking cycle encode information about the azimuthal location of the whisker. These neurons are characterized by preferred phases of firing that are narrowly distributed. Consequently, pooling the rhythmic signal from several upstream neurons is expected to result in a much narrower distribution of preferred phases in the downstream population, which however has not been observed empirically. Here, we show how spike-timing-dependent plasticity (STDP) can provide a solution to this conundrum. We investigated the effect of STDP on the utility of a neural population to transmit rhythmic information downstream using the framework of a modeling study. We found that under a wide range of parameters, STDP facilitated the transfer of rhythmic information despite the fact that all the synaptic weights remained dynamic. As a result, the preferred phase of the downstream neuron was not fixed, but rather drifted in time at a drift velocity that depended on the preferred phase, thus inducing a distribution of preferred phases. We further analyzed how the STDP rule governs the distribution of preferred phases in the downstream population. This link between the STDP rule and the distribution of preferred phases constitutes a natural test for our theory.



rate research

Read More

We present a method to estimate Gibbs distributions with textit{spatio-temporal} constraints on spike trains statistics. We apply this method to spike trains recorded from ganglion cells of the salamander retina, in response to natural movies. Our analysis, restricted to a few neurons, performs more accurately than pairwise synchronization models (Ising) or the 1-time step Markov models (cite{marre-boustani-etal:09}) to describe the statistics of spatio-temporal spike patterns and emphasizes the role of higher order spatio-temporal interactions.
136 - Sungho Hong , 2006
White noise methods are a powerful tool for characterizing the computation performed by neural systems. These methods allow one to identify the feature or features that a neural system extracts from a complex input, and to determine how these features are combined to drive the systems spiking response. These methods have also been applied to characterize the input/output relations of single neurons driven by synaptic inputs, simulated by direct current injection. To interpret the results of white noise analysis of single neurons, we would like to understand how the obtained feature space of a single neuron maps onto the biophysical properties of the membrane, in particular the dynamics of ion channels. Here, through analysis of a simple dynamical model neuron, we draw explicit connections between the output of a white noise analysis and the underlying dynamical system. We find that under certain assumptions, the form of the relevant features is well defined by the parameters of the dynamical system. Further, we show that under some conditions, the feature space is spanned by the spike-triggered average and its successive order time derivatives.
Given that many fundamental questions in neuroscience are still open, it seems pertinent to explore whether the brain might use other physical modalities than the ones that have been discovered so far. In particular it is well established that neurons can emit photons, which prompts the question whether these biophotons could serve as signals between neurons, in addition to the well-known electro-chemical signals. For such communication to be targeted, the photons would need to travel in waveguides. Here we show, based on detailed theoretical modeling, that myelinated axons could serve as photonic waveguides, taking into account realistic optical imperfections. We propose experiments, both textit{in vivo} and textit{in vitro}, to test our hypothesis. We discuss the implications of our results, including the question whether photons could mediate long-range quantum entanglement in the brain.
Data on the number of Open Reading Frames (ORFs) coded by genomes from the 3 domains of Life show some notable general features including essential differences between the Prokaryotes and Eukaryotes, with the number of ORFs growing linearly with total genome size for the former, but only logarithmically for the latter. Assuming that the (protein) coding and non-coding fractions of the genome must have different dynamics and that the non-coding fraction must be controlled by a variety of (unspecified) probability distribution functions, we are able to predict that the number of ORFs for Eukaryotes follows a Benford distribution and has a specific logarithmic form. Using the data for 1000+ genomes available to us in early 2010, we find excellent fits to the data over several orders of magnitude, in the linear regime for the Prokaryote data, and the full non-linear form for the Eukaryote data. In their region of overlap the salient features are statistically congruent, which allows us to: interpret the difference between Prokaryotes and Eukaryotes as the manifestation of the increased demand in the biological functions required for the larger Eukaryotes, estimate some minimal genome sizes, and predict a maximal Prokaryote genome size on the order of 8-12 megabasepairs. These results naturally allow a mathematical interpretation in terms of maximal entropy and, therefore, most efficient information transmission.
Humans face the task of balancing dynamic systems near an unstable equilibrium repeatedly throughout their lives. Much research has been aimed at understanding the mechanisms of intermittent control in the context of human balance control. The present paper deals with one of the recent developments in the theory of human intermittent control, namely, the double-well model of noise-driven control activation. We demonstrate that the double-well model can reproduce the whole range of experimentally observed distributions under different conditions. Moreover, we show that a slight change in the noise intensity parameter leads to a sudden shift of the action point distribution shape, that is, a phase transition is observed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا