No Arabic abstract
A striking feature of our fundamentally indeterministic quantum universe is its quasiclassical realm -- the wide range of time place and scale in which the deterministic laws of classical physics hold. Our quasiclassical realmis an emergent feature of the fundamental theories of our universes quantum state and dynamics. There are many types of quasiclassical realms our Universe could exhibit characterized by different variables, different levels of coarse-graining, different locations in spacetime, different classical physics, and different levels of classicality.We propose a measure of classicality for quasiclassical realms, We speculate on the observable consequences of different levels of classicality especially for information gathering and utilizing systems (IGUSes) such ourselves as observers of the Universe.
This paper aims to stress the role of the Cahill-Glauber quasi-probability densities in defining, detecting, and quantifying the non-classicality of field states in quantum optics. The distance between a given pure state and the set of all pure classical states is called here a geometric degree of non-classicality. As such, we investigate non-classicality of a pure single-mode state of the radiation field by using the coherent states as a reference set of pure classical states. It turns out that any such distance is expressed in terms of the maximal value of the Husimi $Q$ function. As an insightful application we consider the de-Gaussification process produced when preparing a quantum state by adding $p$ photons to a pure Gaussian one. For a coherent-state input, we get an analytic degree of non-classicality which compares interestingly with the previously evaluated entanglement potential. Then we show that addition of a single photon to a squeezed vacuum state causes a considerable enhancement of non-classicality, especially at weak and moderate squeezing of the original state. By contrast, addition of further photons is less effective.
Combining intervals of ekpyrotic (ultra-slow) contraction with a (non-singular) classical bounce naturally leads to a novel cyclic theory of the universe in which the Hubble parameter, energy density and temperature oscillate periodically, but the scale factor grows by an exponential factor from one cycle to the next. The resulting cosmology not only resolves the homogeneity, isotropy, flatness and monopole problems and generates a nearly scale invariant spectrum of density perturbations, but it also addresses a number of age-old cosmological issues that big bang inflationary cosmology does not. There may also be wider-ranging implications for fundamental physics, black holes and quantum measurement.
In this work we shall demonstrate that it is possible to describe in a unified way a primordial bounce with the dark energy era, in the context of Gauss-Bonnet modified gravity. Particularly, the early time bounce has a nearly scale invariant power spectrum of primordial scalar curvature perturbations, while the dark energy era is a viable one, meaning that it mimics the $Lambda$-Cold-Dark-Matter model and also is compatible with the Planck 2018 data on cosmological parameters. In addition, our analysis indicates that the dark energy era is free from dark energy oscillations, which occur in the context of $f(R)$ gravity. We further addressed the later issue by examining $f(R)$ extensions of Gauss-Bonnet models, and we showed that the $f(R)$ gravity part of the action actually produces the dark energy oscillations at redshifts $zsim 4$.
We study a cosmological scenario in which inflation is preceded by a bounce. In this scenario, the primordial singularity, one of the major shortcomings of inflation, is replaced by a non-singular bounce, prior to which the universe undergoes a phase of contraction. Our starting point is the bouncing cosmology investigated in Falciano et al. (2008), which we complete by a detailed study of the transfer of cosmological perturbations through the bounce and a discussion of possible observational effects of bouncing cosmologies. We focus on a symmetric bounce and compute the evolution of cosmological perturbations during the contracting, bouncing and inflationary phases. We derive an expression for the Mukhanov-Sasaki perturbation variable at the onset of the inflationary phase that follows the bounce. Rather than being in the Bunch-Davies vacuum, it is found to be in an excited state that depends on the time scale of the bounce. We then show that this induces oscillations superimposed on the nearly scale-invariant primordial spectra for scalar and tensor perturbations. We discuss the effects of these oscillations in the cosmic microwave background and in the matter power spectrum. We propose a new way to indirectly measure the spatial curvature energy density parameter in the context of this model.
We propose a modified gravity theory that propagates only two local gravitational degrees of freedom and that does not have an Einstein frame. According to the classification in JCAP 01 (2019) 017 [arXiv:1810.01047 [gr-qc]], this is a type-II minimally modified gravity theory. The theory is characterized by the gravitational constant $G_{rm N}$ and a function $V(phi)$ of a non-dynamical auxiliary field $phi$ that plays the role of dark energy. Once one fixes a homogeneous and isotropic cosmological background, the form of $V(phi)$ is determined and the theory no longer possesses a free parameter or a free function, besides $G_{rm N}$. For $V(phi) = 0$ the theory reduces to general relativity (GR) with $G_N$ being the Newtons constant and $V=const.$ being the cosmological constant. For $V(phi) e 0$, it is shown that gravity behaves differently from GR but that GR with $G_{rm N}$ being the Newtons constant is recovered for weak gravity at distance and time scales sufficiently shorter than the scale associated with $V(phi)$. Therefore this theory provides the simplest framework of cosmology in which deviations from GR can be tested by observational data.