No Arabic abstract
This paper aims to stress the role of the Cahill-Glauber quasi-probability densities in defining, detecting, and quantifying the non-classicality of field states in quantum optics. The distance between a given pure state and the set of all pure classical states is called here a geometric degree of non-classicality. As such, we investigate non-classicality of a pure single-mode state of the radiation field by using the coherent states as a reference set of pure classical states. It turns out that any such distance is expressed in terms of the maximal value of the Husimi $Q$ function. As an insightful application we consider the de-Gaussification process produced when preparing a quantum state by adding $p$ photons to a pure Gaussian one. For a coherent-state input, we get an analytic degree of non-classicality which compares interestingly with the previously evaluated entanglement potential. Then we show that addition of a single photon to a squeezed vacuum state causes a considerable enhancement of non-classicality, especially at weak and moderate squeezing of the original state. By contrast, addition of further photons is less effective.
A striking feature of our fundamentally indeterministic quantum universe is its quasiclassical realm -- the wide range of time place and scale in which the deterministic laws of classical physics hold. Our quasiclassical realmis an emergent feature of the fundamental theories of our universes quantum state and dynamics. There are many types of quasiclassical realms our Universe could exhibit characterized by different variables, different levels of coarse-graining, different locations in spacetime, different classical physics, and different levels of classicality.We propose a measure of classicality for quasiclassical realms, We speculate on the observable consequences of different levels of classicality especially for information gathering and utilizing systems (IGUSes) such ourselves as observers of the Universe.
We discuss some properties of the quantum discord based on the geometric distance advanced by Dakic, Vedral, and Brukner [Phys. Rev. Lett. {bf 105}, 190502 (2010)], with emphasis on Werner- and MEM-states. We ascertain just how good the measure is in representing quantum discord. We explore the dependence of quantum discord on the degree of mixedness of the bipartite states, and also its connection with non-locality as measured by the maximum violation of a Bell inequality within the CHSH scenario.
The experimental observation of a clear quantum signature of gravity is believed to be out of the grasp of current technology. However, several recent promising proposals to test the possible existence of non-classical features of gravity seem to be accessible by the state-of-art table-top experiments. Among them, some aim at measuring the gravitationally induced entanglement between two masses which would be a distinct non-classical signature of gravity. We explicitly study, in two of these proposals, the effects of decoherence on the systems dynamics by monitoring the corresponding degree of entanglement. We identify the required experimental conditions necessary to perform successfully the experiments. In parallel, we account also for the possible effects of the Continuous Spontaneous Localization (CSL) model, which is the most known among the models of spontaneous wavefunction collapse. We find that any value of the parameters of the CSL model would completely hinder the generation of gravitationally induced entanglement.
Quantum discord quantifies non-classical correlations in quantum states. We introduce discord for states in causal probabilistic theories, inspired by the original definition proposed in Ref. [17]. We show that the only probabilistic theory in which all states have null discord is classical probability theory. Non-null discord is then not just a quantum feature, but a generic signature of non-classicality.
We study the geometric measure of quantum coherence recently proposed in [Phys. Rev. Lett. 115, 020403 (2015)]. Both lower and upper bounds of this measure are provided. These bounds are shown to be tight for a class of important coherent states -- maximally coherent mixed states. The trade-off relation between quantum coherence and mixedness for this measure is also discussed.