Do you want to publish a course? Click here

Three-body bound states of two bosons and one impurity in one dimension

137   0   0.0 ( 0 )
 Added by Yanxia Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate one-dimensional three-body systems composed of two identical bosons and one imbalanced atom (impurity) with two-body and three-body zero-range interactions. For the case in the absence of three-body interaction, we give a complete phase diagram of the number of three-body bound states in the whole region of mass ratio via the direct calculation of the Skornyakov-Ter-Martirosyan equations. We demonstrate that other low-lying three-body bound states emerge when the mass of the impurity particle is not equal to another two identical particles. We can obtain not only the binding energies but also the corresponding wave functions. When the mass of impurity atom is vary large, there are at most three three-body bound states. We then study the effect of three-body zero-range interaction and unveil that it can induces one more three-body bound state at a certain region of coupling strength ratio under a fixed mass ratio.



rate research

Read More

We study a heavy-heavy-light three-body system confined to one space dimension provided the binding energy of an excited state in the heavy-light subsystems approaches zero. The associated two-body system is characterized by (i) the structure of the weakly-bound excited heavy-light state and (ii) the presence of deeply-bound heavy-light states. The consequences of these aspects for the behavior of the three-body system are analyzed. We find strong indication for universal behavior of both three-body binding energies and wave functions for different weakly-bound excited states in the heavy-light subsystems.
We study clusters of the type A$_N$B$_M$ with $Nleq Mleq 3$ in a two-dimensional mixture of A and B bosons, with attractive AB and equally repulsive AA and BB interactions. In order to check universal aspects of the problem, we choose two very different models: dipolar bosons in a bilayer geometry and particles interacting via separable Gaussian potentials. We find that all the considered clusters are bound and that their energies are universal functions of the scattering lengths $a_{AB}$ and $a_{AA}=a_{BB}$, for sufficiently large attraction-to-repulsion ratios $a_{AB}/a_{BB}$. When $a_{AB}/a_{BB}$ decreases below $approx 10$, the dimer-dimer interaction changes from attractive to repulsive and the population-balanced AABB and AAABBB clusters break into AB dimers. Calculating the AAABBB hexamer energy just below this threshold, we find an effective three-dimer repulsion which may have important implications for the many-body problem, particularly for observing liquid and supersolid states of dipolar dimers in the bilayer geometry. The population-imbalanced ABB trimer, ABBB tetramer, and AABBB pentamer remain bound beyond the dimer-dimer threshold. In the dipolar model, they break up at $a_{AB}approx 2 a_{BB}$ where the atom-dimer interaction switches to repulsion.
We study a system of two bosons of one species and a third boson of a second species in a one-dimensional parabolic trap at zero temperature. We assume contact repulsive inter- and intra-species interactions. By means of an exact diagonalization method we calculate the ground and excited states for the whole range of interactions. We use discrete group theory to classify the eigenstates according to the symmetry of the interaction potential. We also propose and validate analytical ansatzs gaining physical insight over the numerically obtained wavefunctions. We show that, for both approaches, it is crucial to take into account that the distinguishability of the third atom implies the absence of any restriction over the wavefunction when interchanging this boson with any of the other two. We find that there are degeneracies in the spectra in some limiting regimes, that is, when the inter-species and/or the intra-species interactions tend to infinity. This is in contrast with the three-identical boson system, where no degeneracy occurs in these limits. We show that, when tuning both types of interactions through a protocol that keeps them equal while they are increased towards infinity, the systemss ground state resembles that of three indistinguishable bosons. Contrarily, the systemss ground state is different from that of three-identical bosons when both types of interactions are increased towards infinity through protocols that do not restrict them to be equal. We study the coherence and correlations of the system as the interactions are tuned through different protocols, which permit to built up different correlations in the system and lead to different spatial distributions of the three atoms.
We solve the three-boson problem with contact two- and three-body interactions in one dimension and analytically calculate the ground and excited trimer-state energies. Then, by using the diffusion Monte Carlo technique we calculate the binding energy of three dimers formed in a one-dimensional Bose-Bose or Fermi-Bose mixture with attractive interspecies and repulsive intraspecies interactions. Combining these results with our three-body analytics we extract the three-dimer scattering length close to the dimer-dimer zero crossing. In both considered cases the three-dimer interaction turns out to be repulsive. Our results constitute a concrete proposal for obtaining a one-dimensional gas with a pure three-body repulsion.
The expansion dynamics of bosonic gases in optical lattices has recently been the focus of increasing attention, both experimental and theoretical. We consider, by means of numerical Bethe ansatz, the expansion dynamics of initially confined wave packets of two interacting bosons on a lattice. We show that a correspondence between the asymptotic expansion velocities and the projection of the evolved wave function over the bound states of the system exists, clarifying the existing picture for such situations. Moreover, we investigate the role of the lattice in this kind of evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا