Do you want to publish a course? Click here

Distinguishability, degeneracy and correlations in three harmonically trapped bosons in one-dimension

179   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a system of two bosons of one species and a third boson of a second species in a one-dimensional parabolic trap at zero temperature. We assume contact repulsive inter- and intra-species interactions. By means of an exact diagonalization method we calculate the ground and excited states for the whole range of interactions. We use discrete group theory to classify the eigenstates according to the symmetry of the interaction potential. We also propose and validate analytical ansatzs gaining physical insight over the numerically obtained wavefunctions. We show that, for both approaches, it is crucial to take into account that the distinguishability of the third atom implies the absence of any restriction over the wavefunction when interchanging this boson with any of the other two. We find that there are degeneracies in the spectra in some limiting regimes, that is, when the inter-species and/or the intra-species interactions tend to infinity. This is in contrast with the three-identical boson system, where no degeneracy occurs in these limits. We show that, when tuning both types of interactions through a protocol that keeps them equal while they are increased towards infinity, the systemss ground state resembles that of three indistinguishable bosons. Contrarily, the systemss ground state is different from that of three-identical bosons when both types of interactions are increased towards infinity through protocols that do not restrict them to be equal. We study the coherence and correlations of the system as the interactions are tuned through different protocols, which permit to built up different correlations in the system and lead to different spatial distributions of the three atoms.



rate research

Read More

70 - Lijun Yang , Lihong Zhou , Wei Yi 2017
Motivated by a recent experiment by F. Meinert et al, arxiv:1608.08200, we study the dynamics of an impurity moving in the background of a harmonically trapped one-dimensional Bose gas in the hard-core limit. We show that due to the hidden lattice structure of background bosons, the impurity effectively feels a quasi-periodic potential via impurity-boson interactions that can drive the Bloch oscillation under an external force, even in the absence of real lattice potentials. Meanwhile, the inhomogeneous density of trapped bosons imposes an additional harmonic potential to the impurity, resulting in a similar oscillation dynamics but with different periods and amplitudes. We show that the sign and the strength of impurity-boson coupling can significantly affect above two potentials so as to determine the impurity dynamics.
136 - Yanxia Liu , Yi-Cong Yu , 2021
We investigate one-dimensional three-body systems composed of two identical bosons and one imbalanced atom (impurity) with two-body and three-body zero-range interactions. For the case in the absence of three-body interaction, we give a complete phase diagram of the number of three-body bound states in the whole region of mass ratio via the direct calculation of the Skornyakov-Ter-Martirosyan equations. We demonstrate that other low-lying three-body bound states emerge when the mass of the impurity particle is not equal to another two identical particles. We can obtain not only the binding energies but also the corresponding wave functions. When the mass of impurity atom is vary large, there are at most three three-body bound states. We then study the effect of three-body zero-range interaction and unveil that it can induces one more three-body bound state at a certain region of coupling strength ratio under a fixed mass ratio.
We unravel the stationary properties and the interaction quench dynamics of two bosons, confined in a two-dimensional anisotropic harmonic trap. A transcendental equation is derived giving access to the energy spectrum and revealing the dependence of the energy gaps on the anisotropy parameter. The relation between the two and the one dimensional scattering lengths as well as the Tan contacts is established. The contact, capturing the two-body short range correlations, shows an increasing tendency for a larger anisotropy. Subsequently, the interaction quench dynamics from attractive to repulsive values and vice versa is investigated for various anisotropies. A closed analytical form of the expansion coefficients of the two-body wavefunction, during the time evolution is constructed. The response of the system is studied by means of the time-averaged fidelity, the spectra of the spatial extent of the cloud in each direction and the one-body density. It is found that as the anisotropy increases, the system becomes less perturbed independently of the interactions while for fixed anisotropy quenches towards the non-interacting regime perturb the system in the most efficient manner. Furthermore, we identify that in the tightly confined direction more frequencies are involved in the dynamics stemming from higher-lying excited states.
150 - M.D. Girardeau 2010
Motivated by previous suggestions that three-body hard-core interactions in lower-dimensional ultracold Bose gases might provide a way for creation of non-Abelian anyons, the exact ground state of a harmonically trapped 1D Bose gas with three-body hard-core interactions is constructed by duality mapping, starting from an $N$-particle ideal gas of mixed symmetry with three-body nodes, which has double occupation of the lowest harmonic oscillator orbital and single occupation of the next $N-2$ orbitals. It has some similarity to the ground state of a Tonks-Girardeau gas, but is more complicated. It is proved that in 1D any system of $Nge 3$ bosons with three-body hard-core interactions also has two-body soft-core interactions of generalized Lieb-Liniger delta function form, as a consequence of the topology of the configuration space of $N$ particles in 1D, i.e., wave functions with emph{only} three-body hard core zeroes are topologically impossible. This is in contrast with the case of 2D, where pure three-body hard-core interactions do exist, and are closely related to the fractional quantized Hall effect. The exact ground state is compared with a previously-proposed Pfaffian-like approximate ground state, which satisfies the three-body hard-core constraint but is not an exact energy eigenstate. Both the exact ground state and the Pfaffian-like approximation imply two-body soft-core interactions as well as three-body hard-core interactions, in accord with the general topological proof.
We study ultra-cold bosons out of equilibrium in a one-dimensional (1D) setting and probe the breaking of integrability and the resulting relaxation at the onset of the crossover from one to three dimensions. In a quantum Newtons cradle type experiment, we excite the atoms to oscillate and collide in an array of 1D tubes and observe the evolution for up to 4.8 seconds (400 oscillations) with minimal heating and loss. By investigating the dynamics of the longitudinal momentum distribution function and the transverse excitation, we observe and quantify a two-stage relaxation process. In the initial stage single-body dephasing reduces the 1D densities, thus rapidly drives the 1D gas out of the quantum degenerate regime. The momentum distribution function asymptotically approaches the distribution of quasimomenta (rapidities), which are conserved in an integrable system. In the subsequent long time evolution, the 1D gas slowly relaxes towards thermal equilibrium through the collisions with transversely excited atoms. Moreover, we tune the dynamics in the dimensional crossover by initializing the evolution with different imprinted longitudinal momenta (energies). The dynamical evolution towards the relaxed state is quantitatively described by a semiclassical molecular dynamics simulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا