Do you want to publish a course? Click here

Flavour-selective localization in interacting lattice fermions via SU(N) symmetry breaking

197   0   0.0 ( 0 )
 Added by Daniele Tusi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A large repulsion between particles in a quantum system can lead to their localization, as it happens for the electrons in Mott insulating materials. This paradigm has recently branched out into a new quantum state, the orbital-selective Mott insulator, where electrons in some orbitals are predicted to localize, while others remain itinerant. We provide a direct experimental realization of this phenomenon, that we extend to a more general flavour-selective localization. By using an atom-based quantum simulator, we engineer SU(3) Fermi-Hubbard models breaking their symmetry via a tunable coupling between flavours, observing an enhancement of localization and the emergence of flavour-dependent correlations. Our realization of flavour-selective Mott physics opens the path to the quantum simulation of multicomponent materials, from superconductors to topological insulators.



rate research

Read More

We investigate a species selective cooling process of a trapped $mathrm{SU}(N)$ Fermi gas using entropy redistribution during adiabatic loading of an optical lattice. Using high-temperature expansion of the Hubbard model, we show that when a subset $N_A < N$ of the single-atom levels experiences a stronger trapping potential in a certain region of space, the dimple, it leads to improvement in cooling as compared to a $mathrm{SU}(N_A)$ Fermi gas only. We show that optimal performance is achieved when all atomic levels experience the same potential outside the dimple and we quantify the cooling for various $N_A$ by evaluating the dependence of the final entropy densities and temperatures as functions of the initial entropy. Furthermore, considering ${}^{87}{rm Sr}$ and ${}^{173}{rm Yb}$ for specificity, we provide a quantitative discussion of how the state selective trapping can be achieved with readily available experimental techniques.
The density distribution of the one-dimensional Hubbard model in a harmonic trapping potential is investigated in order to study the effect of the confining trap. Strong superimposed oscillations are always present on top of a uniform density cloud, which show universal scaling behavior as a function of increasing interactions. An analytical formula is proposed on the basis of bosonization, which describes the density oscillations for all interaction strengths. The wavelength of the dominant oscillation changes with interaction, which indicates the crossover to a spin-incoherent regime. Using the Bethe ansatz the shape of the uniform fermion cloud is analyzed in detail, which can be described by a universal scaling form.
Blurring the boundary between bosons and fermions lies at the heart of a wide range of intriguing quantum phenomena in multiple disciplines, ranging from condensed matter physics and atomic, molecular and optical physics to high energy physics. One such example is a multi-component Fermi gas with SU($N$) symmetry that is expected to behave like spinless bosons in the large $N$ limit, where the large number of internal states weakens constraints from the Pauli exclusion principle. However, bosonization in SU($N$) fermions has never been established in high dimensions where exact solutions are absent. Here, we report direct evidence for bosonization in a SU($N$) fermionic ytterbium gas with tunable $N$ in three dimensions (3D). We measure contacts, the central quantity controlling dilute quantum gases, from the momentum distribution, and find that the contact per spin approaches a constant with a 1/$N$ scaling in the low fugacity regime consistent with our theoretical prediction. This scaling signifies the vanishing role of the fermionic statistics in thermodynamics, and allows us to verify bosonization through measuring a single physical quantity. Our work delivers a highly controllable quantum simulator to exchange the bosonic and fermionic statistics through tuning the internal degrees of freedom in any generic dimensions. It also suggests a new route towards exploring multi-component quantum systems and their underlying symmetries with contacts.
Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems.
The exchange coupling between quantum mechanical spins lies at the origin of quantum magnetism. We report on the observation of nearest-neighbor magnetic spin correlations emerging in the many-body state of a thermalized Fermi gas in an optical lattice. The key to obtaining short-range magnetic order is a local redistribution of entropy within the lattice structure. This is achieved in a tunable-geometry optical lattice, which also enables the detection of the magnetic correlations. We load a low-temperature two-component Fermi gas with repulsive interactions into either a dimerized or an anisotropic simple cubic lattice. For both systems the correlations manifest as an excess number of singlets as compared to triplets consisting of two atoms with opposite spins. For the anisotropic lattice, we determine the transverse spin correlator from the singlet-triplet imbalance and observe antiferromagnetic correlations along one spatial axis. Our work paves the way for addressing open problems in quantum magnetism using ultracold fermions in optical lattices as quantum simulators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا