Do you want to publish a course? Click here

The infall of dwarf satellite galaxies are influenced by their hosts massive accretions

290   0   0.0 ( 0 )
 Added by Richard D'Souza
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent progress in constraining the massive accretions (>1:10) experienced by the Milky Way (MW) and the Andromeda galaxy (M31) offers an opportunity to understand the dwarf galaxy population of the Local Group. Using zoom-in dark matter-only simulations of MW-mass haloes and concentrating on subhaloes that are thought to be capable of hosting dwarf galaxies, we demonstrate that the infall of a massive progenitor is accompanied with the accretion and destruction of a large number of subhaloes. Massive accreted progenitors do not increase the total number of infalling subhaloes onto a MW-mass host, but instead focus surrounding subhaloes onto the host causing a clustering in the infall time of subhaloes. This leads to a temporary elevation in the number of subhaloes as well as changes in their cumulative radial profile within the virial radius of the host. Surviving associated subhaloes with a massive progenitor have a large diversity in their orbits. We find that the star formation quenching times of Local Group dwarf spheroidal galaxies ($10^{5} mathrm{M_{odot}} lesssim mathrm{M}_{*} lesssim 10^{7} mathrm{M_{odot}}$) are clustered around the times of the most massive accretions suffered by the MW and M31. Our results imply that a) the quenching time of dwarf spheroidals is a good proxy of their infall time and b) the absence of recently quenched satellites around M31 suggests that M33 is not on its first infall and was accreted much earlier.



rate research

Read More

In the Local Group (LG), almost all satellite dwarf galaxies that are within the virial radius of the Milky Way (MW) and Andromeda (M31) exhibit strong environmental influence. The orbital histories of these satellites provide the key to understanding the role of the MW/M31 halo, lower-mass groups, and cosmic reionization on the evolution of dwarf galaxies. We examine the virial-infall histories of satellites with M_star = 10^{3-9} M_sun using the ELVIS suite of cosmological zoom-in dissipationless simulations of 48 MW/M31-like halos. Satellites at z = 0 fell into the MW/M31 halos typically 5 - 8 Gyr ago at z = 0.5 - 1. However, they first fell into any host halo typically 7 - 10 Gyr ago at z = 0.7 - 1.5. This difference arises because many satellites experienced group preprocessing in another host halo, typically of M_vir ~ 10^{10-12} M_sun, before falling into the MW/M31 halos. Satellites with lower mass and/or those closer to the MW/M31 fell in earlier and are more likely to have experienced group preprocessing; half of all satellites with M_star < 10^6 M_sun were preprocessed in a group. Infalling groups also drive most satellite-satellite mergers within the MW/M31 halos. Finally, none of the surviving satellites at z = 0 were within the virial radius of their MW/M31 halo during reionization (z > 6), and only < 4% were satellites of any other host halo during reionization. Thus, effects of cosmic reionization versus host-halo environment on the formation histories of surviving dwarf galaxies in the LG occurred at distinct epochs, separated typically by 2 - 4 Gyr, so they are separable theoretically and, in principle, observationally.
Local Group satellite galaxies show a wide diversity of star formation histories (SFHs) whose origin is yet to be fully understood. Using hydrodynamical simulations from the Constrained Local UniversE project, we study the SFHs of satellites of Milky Way-like galaxies in a cosmological context: while in the majority of the cases the accretion onto their host galaxy causes the satellites to lose their gas, with a subsequent suppression in SF, in about 25$%$ of our sample we observe a clear enhancement of SF after infall. Peaks in SF clearly correlate with the satellite pericentric passage around its host and, in one case, with a satellite-satellite interaction. We identify two key ingredients that result in enhanced SF after infall: galaxies must enter the hosts virial radius with a reservoir of cold gas $M_{rm gas,inf}/M_{rm vir,inf}gtrsim 10^{-2}$ and with a minimum pericentric distance $gtrsim$10 kpc (mean distance $sim$50 kpc for the full sample), in order to form new stars due to compression of cold gas at pericentric passage. On the other hand, satellites that infall with little gas or whose pericentric distance is too small, have their gas ram-pressure stripped and subsequent SF quenched. The pericentric passage of satellites likewise correlates with SF peaks in their hosts, suggesting that this mechanism induces bursts of SF in satellites and central galaxies alike, in agreement with recent studies of our Galaxys SFH. Our findings can explain the recently reported multiple stellar populations observed in dwarf galaxies such as Carina and Fornax, and should be taken into account in semi-analytic models of galaxy formation and satellite quenching.
We present the results of an extensive search for dwarf satellite galaxies around 10 primary host galaxies in the Local Volume (D$<$12 Mpc) using archival CFHT/MegaCam imaging data. The hosts span a wide range in properties, with stellar masses ranging from that of the LMC to ${sim}3$ times that of the Milky Way (MW). The surveyed hosts are: NGC 1023, NGC 1156, NGC 2903, NGC 4258, NGC 4565, NGC 4631, NGC 5023, M51, M64, and M104. We detect satellite candidates using a consistent semi-automated detection algorithm that is optimized for the detection of low surface brightness objects. Depending on the host, our completeness limit is $M_g{sim}-8$ to $-10$ (assuming the distance of the host). We detect objects with surface brightness down to $mu_{0,g}{sim}26$ mag arcsec$^{-2}$ at $gtrsim90%$ completeness. The survey areas of the six best-surveyed hosts cover most of the inner projected $R<150$ kpc area, which roughly doubles the number of MW-mass hosts surveyed at this level of area and luminosity completeness. The number of detected candidates range from 1 around M64 to 33 around NGC 4258. In total, 153 candidates are found, of which 93 are new. While we defer an analysis of the satellite luminosity functions of the hosts until distance information is available for the candidates, we do show that the candidates are primarily red, spheroid systems with properties roughly consistent with known satellites in the Local Group.
93 - Marius Cautun 2015
The detection of planar structures within the satellite systems of both the Milky Way (MW) and Andromeda (M31) has been reported as being in stark contradiction to the predictions of the standard cosmological model ($Lambda$CDM). Given the ambiguity in defining a planar configuration, it is unclear how to interpret the low incidence of the MW and M31 planes in $Lambda$CDM. We investigate the prevalence of satellite planes around galactic mass haloes identified in high resolution cosmological simulations. We find that planar structures are very common, and that ~10% of $Lambda$CDM haloes have even more prominent planes than those present in the Local Group. While ubiquitous, the planes of satellite galaxies show a large diversity in their properties. This precludes using one or two systems as small scale probes of cosmology, since a large sample of satellite systems is needed to obtain a good measure of the object-to-object variation. This very diversity has been misinterpreted as a discrepancy between the satellite planes observed in the Local Group and $Lambda$CDM predictions. In fact, ~10% of $Lambda$CDM galactic haloes have planes of satellites that are as infrequent as the MW and M31 planes. The look-elsewhere effect plays an important role in assessing the detection significance of satellite planes and accounting for it leads to overestimating the significance level by a factor of 30 and 100 for the MW and M31 systems, respectively.
322 - Adam Muzzin 2009
Using a sample of nine massive compact galaxies at z ~ 2.3 with rest-frame optical spectroscopy and comprehensive U through 8um photometry we investigate how assumptions in SED modeling change the stellar mass estimates of these galaxies, and how this affects our interpretation of their size evolution. The SEDs are fit to Tau-models with a range of metallicities, dust laws, as well as different stellar population synthesis codes. These models indicate masses equal to, or slightly smaller than our default masses. The maximum difference is 0.16 dex for each parameter considered, and only 0.18 dex for the most extreme combination of parameters. Two-component populations with a maximally old stellar population superposed with a young component provide reasonable fits to these SEDs using the models of Bruzual & Charlot (2003); however, using models with updated treatment of TP-AGB stars the fits are poorer. The two-component models predict masses that are 0.08 to 0.22 dex larger than the Tau-models. We also test the effect of a bottom-light IMF and find that it would reduce the masses of these galaxies by 0.3 dex. Considering the range of allowable masses from the Tau-models, two-component fits, and IMF, we conclude that on average these galaxies lie below the mass-size relation of galaxies in the local universe by a factor of 3-9, depending on the SED models used.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا