Do you want to publish a course? Click here

Wide-Field Survey of Dwarf Satellite Systems Around 10 Hosts in the Local Volume

73   0   0.0 ( 0 )
 Added by Scott Carlsten
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of an extensive search for dwarf satellite galaxies around 10 primary host galaxies in the Local Volume (D$<$12 Mpc) using archival CFHT/MegaCam imaging data. The hosts span a wide range in properties, with stellar masses ranging from that of the LMC to ${sim}3$ times that of the Milky Way (MW). The surveyed hosts are: NGC 1023, NGC 1156, NGC 2903, NGC 4258, NGC 4565, NGC 4631, NGC 5023, M51, M64, and M104. We detect satellite candidates using a consistent semi-automated detection algorithm that is optimized for the detection of low surface brightness objects. Depending on the host, our completeness limit is $M_g{sim}-8$ to $-10$ (assuming the distance of the host). We detect objects with surface brightness down to $mu_{0,g}{sim}26$ mag arcsec$^{-2}$ at $gtrsim90%$ completeness. The survey areas of the six best-surveyed hosts cover most of the inner projected $R<150$ kpc area, which roughly doubles the number of MW-mass hosts surveyed at this level of area and luminosity completeness. The number of detected candidates range from 1 around M64 to 33 around NGC 4258. In total, 153 candidates are found, of which 93 are new. While we defer an analysis of the satellite luminosity functions of the hosts until distance information is available for the candidates, we do show that the candidates are primarily red, spheroid systems with properties roughly consistent with known satellites in the Local Group.



rate research

Read More

The radial spatial distribution of low-mass satellites around a Milky Way (MW)-like host is an important benchmark for simulations of small-scale structure. The distribution is sensitive to the disruption of subhalos by the central disk and can indicate whether the disruption observed in simulations of MW analogs is artificial (i.e., numeric) or physical in origin. We consider a sample of 12 well-surveyed satellite systems of MW-like hosts in the Local Volume that are complete to $M_V<-9$ and within 150 projected kpc. We investigate the radial distribution of satellites and compare with $Lambda$CDM cosmological simulations, including big-box cosmological simulations and high resolution zoom in simulations of MW sized halos. We find that the observed satellites are significantly more centrally concentrated than the simulated systems. Several of the observed hosts, including the MW, are $sim2sigma$ outliers relative to the simulated hosts in being too concentrated, while none of the observed hosts are less centrally concentrated than the simulations. This result is robust to different ways of measuring the radial concentration. We find that this discrepancy is more significant for bright, $M_V<-12$ satellites, suggestive that this is not the result of observational incompleteness. We argue that the discrepancy is possibly due to artificial disruption in the simulations, but, if so, this has important ramifications for what stellar to halo mass relation is allowed in the low-mass regime by the observed abundance of satellites.
Low-mass satellites around Milky Way (MW)-like galaxies are important probes of small scale structure and galaxy formation. However, confirmation of satellite candidates with distance measurements remains a key barrier to fast progress in the Local Volume (LV). We measure the surface brightness fluctuation (SBF) distances to recently cataloged candidate dwarf satellites around 10 massive hosts within $D<12$ Mpc to confirm association. The satellite systems of these hosts are complete and mostly cleaned of contaminants down to $M_g{sim}-9$ to $-10$, within the area of the search footprints. Joining this sample with hosts surveyed to comparable or better completeness in the literature, we explore how well cosmological simulations combined with common stellar to halo mass relations (SHMR) match observed satellite luminosity functions in the classical satellite luminosity regime. Adopting a SHMR that matches hydrodynamic simulations, the predicted overall satellite abundance agrees well with the observations. The MW is remarkably typical in its luminosity function amongst LV hosts. Contrary to recent results, we find that the host-to-host scatter predicted by the model is in close agreement with the scatter between the observed systems, once the different masses of the observed systems are taken into account. However, we find significant evidence that the observed systems have more bright and fewer faint satellites than the SHMR model predicts, necessitating a higher normalization of the SHMR around halo masses of $10^{11}$ msun than present in common SHMRs. These results demonstrate the utility of nearby satellite systems in inferring the galaxy-subhalo connection in the low-mass regime.
We have obtained deep Hubble Space Telescope (HST) imaging of 19 dwarf galaxy candidates in the vicinity of M101. Advanced Camera for Surveys HST photometry for 2 of these objects showed resolved stellar populations and Tip of the Red Giant Branch derived distances consistent with M101 group membership. The other 17 were found to have no resolved stellar populations, meaning they are background low surface brightness (LSB) galaxies. It is notable that many LSB objects which had previously been assumed to be M101 group members based on projection have been shown to be background objects, indicating the need for future diffuse dwarf surveys to be careful in drawing conclusions about group membership without robust distance estimates. In this work we update the satellite luminosity function of M101 based on the presence of these new objects down to M_V=-8.2. M101 is a sparsely populated system with only 9 satellites down to M_V~-8, as compared to 26 for M31 and 24.5pm7.7 for the median local Milky Way (MW)-mass host. This makes M101 the sparsest group probed to this depth, though M94 is even sparser to the depth it has been examined (M_V=-9.1). M101 and M94 share several properties that mark them as unusual compared to the other local MW-mass galaxies examined: they have a sparse satellite population but also have high star forming fractions among these satellites; such properties are also found in the galaxies examined as part of the SAGA survey. We suggest that these properties appear to be tied to the galactic environment, with more isolated galaxies showing sparse satellite populations which are more likely to have had recent star formation, while those in dense environments have more satellites which tend to have no recent star formation. Overall our results show a level of halo-to-halo scatter between galaxies of similar mass that is larger than is predicted in the LambdaCDM model.
In this paper, we introduce the Local Volume TiNy Titans sample (LV-TNT), which is a part of a larger body of work on interacting dwarf galaxies: TNT (Stierwalt et al. 2015). This LV-TNT sample consists of 10 dwarf galaxy pairs in the Local Universe (< 30 Mpc from Milky Way), which span mass ratios of M_(*,1)/M_(*,2) < 20, projected separations < 100 kpc, and pair member masses of log(M_*/M_Sun) < 9.9. All 10 LV-TNT pairs have resolved synthesis maps of their neutral hydrogen, are located in a range of environments and captured at various interaction stages. This enables us to do a comparative study of the diffuse gas in dwarf-dwarf interactions and disentangle the gas lost due to interactions with halos of massive galaxies, from the gas lost due to mutual interaction between the dwarfs. We find that the neutral gas is extended in the interacting pairs when compared to non-paired analogs, indicating that gas is tidally pre-processed. Additionally, we find that the environment can shape the HI distributions in the form of trailing tails and that the gas is not unbound and lost to the surroundings unless the dwarf pair is residing near a massive galaxy. We conclude that a nearby, massive host galaxy is what ultimately prevents the gas from being reaccreted. Dwarf-dwarf interactions thus represent an important part of the baryon cycle of low mass galaxies, enabling the parking of gas at large distances to serve as a continual gas supply channel until accretion by a more massive host.
We carried out a wide-field V, I imaging survey of the Local Group dwarf spheroidal galaxy Leo II using the Subaru Prime Focus Camera on the 8.2-m Subaru Telescope. The survey covered an area of 26.67 x 26.67 arcmin^2, far beyond the tidal radius of Leo II (8.63 arcmin), down to the limiting magnitude of V ~26, which is roughly 1 mag deeper than the turn-off point of the main sequence stars of Leo II. Radial number density profiles of bright and faint red giant branch (RGB) stars were found to change their slopes at around the tidal radius, and extend beyond the tidal radius with shallower slopes. A smoothed surface brightness map of Leo II suggests the existence of a small substructure of globular cluster luminosity beyond the tidal radius. We investigated the properties of the stellar population by means of the color-magnitude diagram. The horizontal branch (HB) morphology index shows a radial gradient in which red HB stars are more concentrated than blue HB stars, which is common to many Local Group dwarf spheroidal galaxies. The color distribution of RGB stars around the mean RGB sequence shows a larger dispersion at the center than in the outskirts, indicating a mixture of stellar populations at the center and a more homogeneous population in the outskirts. Based on the age estimation using subgiant branch (SGB) stars, we found that although the major star formation took place ~8 Gyr ago, a considerable stellar population younger than 8 Gyr is found at the center; such a younger population is insignificant in the outskirts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا