Do you want to publish a course? Click here

Pericentric passage-driven star formation in satellite galaxies and their hosts: CLUES from Local Group simulations

70   0   0.0 ( 0 )
 Added by Arianna Di Cintio
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Local Group satellite galaxies show a wide diversity of star formation histories (SFHs) whose origin is yet to be fully understood. Using hydrodynamical simulations from the Constrained Local UniversE project, we study the SFHs of satellites of Milky Way-like galaxies in a cosmological context: while in the majority of the cases the accretion onto their host galaxy causes the satellites to lose their gas, with a subsequent suppression in SF, in about 25$%$ of our sample we observe a clear enhancement of SF after infall. Peaks in SF clearly correlate with the satellite pericentric passage around its host and, in one case, with a satellite-satellite interaction. We identify two key ingredients that result in enhanced SF after infall: galaxies must enter the hosts virial radius with a reservoir of cold gas $M_{rm gas,inf}/M_{rm vir,inf}gtrsim 10^{-2}$ and with a minimum pericentric distance $gtrsim$10 kpc (mean distance $sim$50 kpc for the full sample), in order to form new stars due to compression of cold gas at pericentric passage. On the other hand, satellites that infall with little gas or whose pericentric distance is too small, have their gas ram-pressure stripped and subsequent SF quenched. The pericentric passage of satellites likewise correlates with SF peaks in their hosts, suggesting that this mechanism induces bursts of SF in satellites and central galaxies alike, in agreement with recent studies of our Galaxys SFH. Our findings can explain the recently reported multiple stellar populations observed in dwarf galaxies such as Carina and Fornax, and should be taken into account in semi-analytic models of galaxy formation and satellite quenching.



rate research

Read More

We use the APOSTLE and Auriga cosmological simulations to study the star formation histories (SFHs) of field and satellite dwarf galaxies. Despite sizeable galaxy-to-galaxy scatter, the SFHs of APOSTLE and Auriga dwarfs exhibit robust average trends with galaxy stellar mass: faint field dwarfs ($10^5<M_{rm star}/M_odot<10^{6.5}$) have, on average, steadily declining SFHs, whereas brighter dwarfs ($10^{7.5}<M_{rm star}/M_odot<10^{9}$) show the opposite trend. Intermediate-mass dwarfs have roughly constant SFHs. Satellites exhibit similar average trends, but with substantially suppressed star formation in the most recent $sim 5$ Gyr, likely as a result of gas loss due to tidal and ram-pressure stripping after entering the haloes of their primaries. These simple mass and environmental trends are in good agreement with the derived SFHs of Local Group (LG) dwarfs whose photometry reaches the oldest main sequence turnoff. SFHs of galaxies with less deep data show deviations from these trends, but this may be explained, at least in part, by the large galaxy-to-galaxy scatter, the limited sample size, and the large uncertainties of the inferred SFHs. Confirming the predicted mass and environmental trends will require deeper photometric data than currently available, especially for isolated dwarfs.
While many tensions between Local Group (LG) satellite galaxies and LCDM cosmology have been alleviated through recent cosmological simulations, the spatial distribution of satellites remains an important test of physical models and physical versus numerical disruption in simulations. Using the FIRE-2 cosmological zoom-in baryonic simulations, we examine the radial distributions of satellites with Mstar > 10^5 Msun around 8 isolated Milky Way- (MW) mass host galaxies and 4 hosts in LG-like pairs. We demonstrate that these simulations resolve the survival and physical destruction of satellites with Mstar >~ 10^5 Msun. The simulations broadly agree with LG observations, spanning the radial profiles around the MW and M31. This agreement does not depend strongly on satellite mass, even at distances <~ 100 kpc. Host-to-host variation dominates the scatter in satellite counts within 300 kpc of the hosts, while time variation dominates scatter within 50 kpc. More massive host galaxies within our sample have fewer satellites at small distances, likely because of enhanced tidal destruction of satellites via the baryonic disks of host galaxies. Furthermore, we quantify and provide fits to the tidal depletion of subhalos in baryonic relative to dark matter-only simulations as a function of distance. Our simulated profiles imply observational incompleteness in the LG even at Mstar >~ 10^5 Msun: we predict 2-10 such satellites to be discovered around the MW and possibly 6-9 around M31. To provide cosmological context, we compare our results with the radial profiles of satellites around MW analogs in the SAGA survey, finding that our simulations are broadly consistent with most SAGA systems.
137 - Hong-Xin Zhang 2017
Local Group (LG) galaxies have relatively accurate SFHs and metallicity evolution derived from resolved CMD modeling, and thus offer a unique opportunity to explore the efficacy of estimating stellar mass M$_{star}$ of real galaxies based on integrated stellar luminosities. Building on the SFHs and metallicity evolution of 40 LG dwarf galaxies, we carried out a comprehensive study of the influence of SFHs, metallicity evolution, and dust extinction on the UV-to-NIR color-$M/L$ (color-log$Upsilon_{star}$($lambda$)) relations and M$_{star}$ estimation of local universe galaxies. We find that: The LG galaxies follow color-log$Upsilon_{star}$($lambda$) relations that fall in between the ones calibrated by previous studies; Optical color-log$Upsilon_{star}$($lambda$) relations at higher metallicities ([M/H]) are generally broader and steeper; The SFH concentration does not significantly affect the color-log$Upsilon_{star}$($lambda$) relations; Light-weighted ages and [M/H] together constrain log$Upsilon_{star}$($lambda$) with uncertainties ranging from $lesssim$ 0.1 dex for the NIR up to 0.2 dex for the optical passbands; Metallicity evolution induces significant uncertainties to the optical but not NIR $Upsilon_{star}$($lambda$) at given light-weighted ages and [M/H]; The $V$ band is the ideal luminance passband for estimating $Upsilon_{star}$($lambda$) from single colors, because the combinations of $Upsilon_{star}$($V$) and optical colors such as $B-V$ and $g-r$ exhibit the weakest systematic dependence on SFHs, [M/H] and dust extinction; Without any prior assumption on SFHs, M$_{star}$ is constrained with biases $lesssim$ 0.3 dex by the optical-to-NIR SED fitting. Optical passbands alone constrain M$_{star}$ with biases $lesssim$ 0.4 dex (or $lesssim$ 0.6 dex) when dust extinction is fixed (or variable) in SED fitting. [abridged]
79 - Mark R. Lovell 2020
The nature of the dark matter can affect the collapse time of dark matter haloes, and can therefore be imprinted in observables such as the stellar population ages and star formation histories of dwarf galaxies. In this paper we use high resolution hydrodynamical simulations of Local Group-analogue (LG) volumes in cold dark matter (CDM), sterile neutrino warm dark matter (WDM) and self-interacting dark matter (SIDM) models with the EAGLE galaxy formation code to study how galaxy formation times change with dark matter model. We are able to identify the same haloes in different simulations, since they share the same initial density field phases. We find that the stellar mass of galaxies depends systematically on resolution, and can differ by as much as a factor of two in haloes of a given dark matter mass. The evolution of the stellar populations in SIDM is largely identical to that of CDM, but in WDM early star formation is instead suppressed. The time at which LG haloes can begin to form stars through atomic cooling is delayed by $sim$200~Myr in WDM models compared to CDM. It will be necessary to measure stellar ages of old populations to a precision of better than 100~Myr, and to address degeneracies with the redshift of reionization -- and potentially other baryonic processes -- in order to use these observables to distinguish between dark matter models.
We study star formation histories (SFHs) of $simeq500$ dwarf galaxies (stellar mass $M_ast = 10^5 - 10^9,M_odot$) from FIRE-2 cosmological zoom-in simulations. We compare dwarfs around individual Milky Way (MW)-mass galaxies, dwarfs in Local Group (LG)-like environments, and true field (i.e. isolated) dwarf galaxies. We reproduce observed trends wherein higher-mass dwarfs quench later (if at all), regardless of environment. We also identify differences between the environments, both in terms of satellite vs. central and LG vs. individual MWvs. isolated dwarf central. Around the individual MW-mass hosts, we recover the result expected from environmental quenching: central galaxies in the near field have more extended SFHs than their satellite counterparts, with the former more closely resemble isolated (true field) dwarfs (though near-field centrals are still somewhat earlier forming). However, this difference is muted in the LG-like environments, where both near-field centrals and satellites have similar SFHs, which resemble satellites of single MW-mass hosts. This distinction is strongest for $M_ast = 10^6 - 10^7,M_odot$ but exists at other masses. Our results suggest that the paired halo nature of the LG may regulate star formation in dwarf galaxies even beyond the virial radii of the MW and Andromeda. Caution is needed when comparing zoom-in simulations targeting isolated dwarf galaxies against observed dwarf galaxies in the LG.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا