Do you want to publish a course? Click here

Tuning magnetic and transport properties in quasi-2D (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ single crystals

106   0   0.0 ( 0 )
 Added by Saicharan Aswartham
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an optimized chemical vapor transport method to grow single crystals of (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ where x = 0, 0.3, 0.5, 0.7 & 1. Single crystals up to 4,mm,$times$,3,mm,$times$,200,$mu$m were obtained by this method. As-grown crystals characterized by means of scanning electron microscopy, and powder x-ray diffraction measurements. The structural characterization shows that all crystals crystallize in monoclinic symmetry with the space group $C2/m$ (No. 12). We have further investigated the magnetic properties of this series of single crystals. The magnetic measurements of the all as-grown single crystals show long-range antiferromagnetic order along all crystallographic principal axes. Overall, the Neel temperature TN is non-monotonous, with increasing $Ni^{2+}$ doping the temperature of the antiferromagnetic phase transition first decreases from 80 K for pristine Mn$_2$P$_2$S$_6$ (x = 0) up to x = 0.5, and then increases again to 155 K for pure Ni$_2$P$_2$S$_6$ (x = 1). The magnetic anisotropy switches from out-of-plane to in-plane as a function of composition in (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ series. Transport studies under hydrostatic pressure on the parent compound Mn$_2$P$_2$S$_6$ evidence an insulator-metal transition at an applied critical pressure of ~22 GPa



rate research

Read More

Detailed ${}^{31}$P nuclear magnetic resonance (NMR) measurements are presented on well-characterized single crystals of antiferromagnetic van der Waals Ni$_2$P$_2$S$_6$. An anomalous breakdown is observed in the proportionality of the NMR shift $K$ with the bulk susceptibility $chi$. This so-called $K$$-$$chi$ anomaly occurs in close proximity to the broad peak in $chi(T)$, thereby implying a connection to quasi-2D magnetic correlations known to be responsible for this maximum. Quantum chemistry calculations show that crystal field energy level depopulation effects cannot be responsible for the $K$$-$$chi$ anomaly. Appreciable in-plane transferred hyperfine coupling is observed, which is consistent with the proposed Ni$-$S$-$Ni super- and Ni$-$S$-$S$-$Ni super-super-exchange coupling mechanisms. Magnetization and spin$-$lattice relaxation rate ($T_1^{-1}$) measurements indicate little to no magnetic field dependence of the Neel temperature. Finally, $T_1^{-1}(T)$ evidences relaxation driven by three-magnon scattering in the antiferromagnetic state.
Recently, we employed electronic polarization-resolved Raman spectroscopy to reveal the strongly correlated excitonic insulator (EI) nature of Ta2NiSe5, Volkov et al. [arXiv:2007.07344], and also showed that for Ta$_2$Ni(Se$_{1-x}$S$_x$)$_5$ alloys the critical excitonic fluctuations diminish with sulfur concentration x exposing a cooperating lattice instability that takes over for large x, Volkov et al. [arXiv:2104.07032]. Here we focus on the lattice dynamics of this EI family. We identify all Raman-active optical phonons of fully symmetric and ac-quadrupole-like symmetries and study their evolution with temperature and sulfur concentration. We demonstrate the change of selection rules at temperatures below the orthorhombic-to-monoclinic transition at Tc(x) that is related to the EI phase. We find that Tc(x) decrease monotonically from 328 K for Ta2NiSe5 to 120 K for Ta2NiS5 and that the magnitude of lattice distortion also decreases with the sulfur concentration x. For x < 0.7, the two lowest-frequency B2g phonon modes show strongly asymmetric lineshapes at high temperatures due to Fano interference with the broad excitonic continuum present in a semimetallic state. Within the framework of extended Fano model, we develop a quantitative description of the interacting exciton-phonon excitation lineshape, enabling us to derive the intrinsic phonon parameters and determine the exciton-phonon interaction strength, that affects the transition temperature Tc(x). We also observe signatures of the acoustic mode scattered assisted by the structural domain walls formed below Tc. Based on our results, we additionally present a consistent interpretation of the origin of oscillations observed in time-resolved pump-probe experiments.
198 - Yaofeng Xie , Yu Li , Zhiping Yin 2020
We use neutron scattering to investigate spin excitations in Sr(Co$_{1-x}$Ni$_{x})_2$As$_2$, which has a $c$-axis incommensurate helical structure of the two-dimensional (2D) in-plane ferromagnetic (FM) ordered layers for $0.013leq x leq 0.25$. By comparing the wave vector and energy dependent spin excitations in helical ordered Sr(Co$_{0.9}$Ni$_{0.1}$)$_2$As$_2$ and paramagnetic SrCo$_2$As$_2$, we find that Ni-doping, while increasing lattice disorder in Sr(Co$_{1-x}$Ni$_{x})_2$As$_2$, enhances quasi-2D FM spin fluctuations. However, our band structure calculations within the combined density functional theory and dynamic mean field theory (DFT+DMFT) failed to generate a correct incommensurate wave vector for the observed helical order from nested Fermi surfaces. Since transport measurements reveal increased in-plane and $c$-axis electrical resistivity with increasing Ni-doping and associated lattice disorder, we conclude that the helical magnetic order in Sr(Co$_{1-x}$Ni$_{x})_2$As$_2$ may arise from a quantum order-by-disorder mechanism through the itinerant electron mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions.
We report on a new method to determine the degree of bulk spin polarization in single crystal Co$_{(1-x)}$Fe$_x$S$_2$ by modeling magnetic Compton scattering with {it ab initio} calculations. Spin-dependent Compton profiles were measured for CoS$_2$ and Co$_{0.9}$Fe$_{0.1}$S$_2$. The {it ab initio} calculations were then refined by rigidly shifting the bands to provide the best fit between the calculated and experimental directional profiles for each sample. The bulk spin polarizations, $P$, corresponding to the spin-polarized density of states at the Fermi level, were then extracted from the {it refined} calculations. The values were found to be $P=-72 pm 6 %$ and $P=18 pm 7%$ for CoS$_2$ and Co$_{0.9}$Fe$_{0.1}$S$_2$ respectively. Furthermore, determinations of $P$ weighted by the Fermi velocity ($v_F$ or $v_F^2$) were obtained, permitting a rigorous comparison with other experimental data and highlighting the experimental dependence of $P$ on $v_F$.
Co-based shandite Co$_3$Sn$_2$S$_2$ is a representative example of magnetic Weyl semimetals showing rich transport phenomena. We thoroughly investigate magnetic and transport properties of hole-doped shandites Co$_3$In$_x$Sn$_{2-x}$S$_2$ by first-principles calculations. The calculations reproduce nonlinear reduction of anomalous Hall conductivity with doping In for Co$_3$Sn$_2$S$_2$, as reported in experiments, against the linearly decreased ferromagnetic moment within virtual crystal approximation. We show that a drastic change in the band parity character of Fermi surfaces, attributed to the nodal rings lifted energetically with In-doping, leads to strong enhancement of anomalous Nernst conductivity with reversing its sign in Co$_3$In$_x$Sn$_{2-x}$S$_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا