Do you want to publish a course? Click here

Bulk Spin Polarization of Co$_{(1-x)}$Fe$_x$S$_2$

113   0   0.0 ( 0 )
 Added by Jude Laverock
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a new method to determine the degree of bulk spin polarization in single crystal Co$_{(1-x)}$Fe$_x$S$_2$ by modeling magnetic Compton scattering with {it ab initio} calculations. Spin-dependent Compton profiles were measured for CoS$_2$ and Co$_{0.9}$Fe$_{0.1}$S$_2$. The {it ab initio} calculations were then refined by rigidly shifting the bands to provide the best fit between the calculated and experimental directional profiles for each sample. The bulk spin polarizations, $P$, corresponding to the spin-polarized density of states at the Fermi level, were then extracted from the {it refined} calculations. The values were found to be $P=-72 pm 6 %$ and $P=18 pm 7%$ for CoS$_2$ and Co$_{0.9}$Fe$_{0.1}$S$_2$ respectively. Furthermore, determinations of $P$ weighted by the Fermi velocity ($v_F$ or $v_F^2$) were obtained, permitting a rigorous comparison with other experimental data and highlighting the experimental dependence of $P$ on $v_F$.

rate research

Read More

We report high-resolution, bulk Compton scattering measurements unveiling the Fermi surface of an optimally-doped iron-arsenide superconductor, Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$. Our measurements are in agreement with first-principles calculations of the electronic structure, revealing both the $X$-centered electron pockets and the $Gamma$-centered hole pockets. Moreover, our data are consistent with the strong three-dimensionality of one of these sheets that has been predicted by electronic structure calculations at the local-density-approximation-minimum As position. Complementary calculations of the noninteracting susceptibility, $chi_0({bf q}, omega)$, suggest that the broad peak that develops due to interband Fermi-surface nesting, and which has motivated several theories of superconductivity in this class of material, survives the measured three dimensionality of the Fermi surface in this family.
152 - S Chadov , G.H. Fecher , C. Felser 2008
This study presents the effect of local electronic correlations on the Heusler compounds Co$_2$Mn$_{1-x}$Fe$_x$Si as a function of the concentration $x$. The analysis has been performed by means of first-principles band-structure calculations based on the local approximation to spin-density functional theory (LSDA). Correlation effects are treated in terms of the Dynamical Mean-Field Theory (DMFT) and the LSDA+U approach. The formalism is implemented within the Korringa-Kohn-Rostoker (KKR) Greens function method. In good agreement with the available experimental data the magnetic and spectroscopic properties of the compound are explained in terms of strong electronic correlations. In addition the correlation effects have been analysed separately with respect to their static or dynamical origin. To achieve a quantitative description of the electronic structure of Co$_2$Mn$_{1-x}$Fe$_x$Si both static and dynamic correlations must be treated on equal footing.
Recently, we employed electronic polarization-resolved Raman spectroscopy to reveal the strongly correlated excitonic insulator (EI) nature of Ta2NiSe5, Volkov et al. [arXiv:2007.07344], and also showed that for Ta$_2$Ni(Se$_{1-x}$S$_x$)$_5$ alloys the critical excitonic fluctuations diminish with sulfur concentration x exposing a cooperating lattice instability that takes over for large x, Volkov et al. [arXiv:2104.07032]. Here we focus on the lattice dynamics of this EI family. We identify all Raman-active optical phonons of fully symmetric and ac-quadrupole-like symmetries and study their evolution with temperature and sulfur concentration. We demonstrate the change of selection rules at temperatures below the orthorhombic-to-monoclinic transition at Tc(x) that is related to the EI phase. We find that Tc(x) decrease monotonically from 328 K for Ta2NiSe5 to 120 K for Ta2NiS5 and that the magnitude of lattice distortion also decreases with the sulfur concentration x. For x < 0.7, the two lowest-frequency B2g phonon modes show strongly asymmetric lineshapes at high temperatures due to Fano interference with the broad excitonic continuum present in a semimetallic state. Within the framework of extended Fano model, we develop a quantitative description of the interacting exciton-phonon excitation lineshape, enabling us to derive the intrinsic phonon parameters and determine the exciton-phonon interaction strength, that affects the transition temperature Tc(x). We also observe signatures of the acoustic mode scattered assisted by the structural domain walls formed below Tc. Based on our results, we additionally present a consistent interpretation of the origin of oscillations observed in time-resolved pump-probe experiments.
105 - Y. Shemerliuk , Y. Zhou , Z. Yang 2021
We report an optimized chemical vapor transport method to grow single crystals of (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ where x = 0, 0.3, 0.5, 0.7 & 1. Single crystals up to 4,mm,$times$,3,mm,$times$,200,$mu$m were obtained by this method. As-grown crystals characterized by means of scanning electron microscopy, and powder x-ray diffraction measurements. The structural characterization shows that all crystals crystallize in monoclinic symmetry with the space group $C2/m$ (No. 12). We have further investigated the magnetic properties of this series of single crystals. The magnetic measurements of the all as-grown single crystals show long-range antiferromagnetic order along all crystallographic principal axes. Overall, the Neel temperature TN is non-monotonous, with increasing $Ni^{2+}$ doping the temperature of the antiferromagnetic phase transition first decreases from 80 K for pristine Mn$_2$P$_2$S$_6$ (x = 0) up to x = 0.5, and then increases again to 155 K for pure Ni$_2$P$_2$S$_6$ (x = 1). The magnetic anisotropy switches from out-of-plane to in-plane as a function of composition in (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ series. Transport studies under hydrostatic pressure on the parent compound Mn$_2$P$_2$S$_6$ evidence an insulator-metal transition at an applied critical pressure of ~22 GPa
Remarkably, doping isovalent $d^{10}$ and $d^0$ cations onto the $B$ site in $A_2B$$B$O$_6$ double perovskites has the power to direct the magnetic interactions between magnetic $B$ cations. This is due to changes in orbital hybridization, which favors different superexchange pathways, and leads to the formation of alternative magnetic structures depending on whether $B$ is $d^{10}$ or $d^0$. Furthermore, the competition generated by introducing mixtures of $d^{10}$ and $d^0$ cations can drive the material into the realms of exotic quantum magnetism. Here, a W$^{6+}$ $d^0$ dopant was introduced to a $d^{10}$ hexagonal perovskite Ba$_2$CuTeO$_6$, which possesses a spin ladder geometry of Cu$^{2+}$ cations, creating a Ba$_2$CuTe$_{1-x}$W$_x$O$_6$ solid solution ($x$ = 0 - 0.3). Neutron and synchrotron X-ray diffraction show that W$^{6+}$ is almost exclusively substituted for Te$^{6+}$ on the corner-sharing site within the spin ladder, in preference to the face-sharing site between ladders. This means the intra-ladder interactions are selectively tuned by the $d^0$ cations. Bulk magnetic measurements suggest this suppresses magnetic ordering in a similar manner to that observed for the spin-liquid like material Sr$_2$CuTe$_{1-x}$W$_x$O$_6$. This further demonstrates the utility of $d^{10}$ and $d^0$ dopants as a tool for tuning magnetic ground states in a wide range of perovskites and perovskite-derived structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا