No Arabic abstract
A cosystem consists of a possibly nonselfadoint operator algebra equipped with a coaction by a discrete group. We introduce the concept of C*-envelope for a cosystem; roughly speaking, this is the smallest C*-algebraic cosystem that contains an equivariant completely isometric copy of the original one. We show that the C*-envelope for a cosystem always exists and we explain how it relates to the usual C*-envelope. We then show that for compactly aligned product systems over group-embeddable right LCM semigroups, the C*-envelope is co-universal, in the sense of Carlsen, Larsen, Sims and Vittadello, for the Fock tensor algebra equipped with its natural coaction. This yields the existence of a co-universal C*-algebra, generalizing previous results of Carlsen, Larsen, Sims and Vittadello, and of Dor-On and Katsoulis. We also realize the C*-envelope of the tensor algebra as the reduced cross sectional algebra of a Fell bundle introduced by Sehnem, which, under a mild assumption of normality, we then identify to the quotient of the Fock algebra by the image of Sehnems strong covariance ideal. In another application, we obtain a reduced Hao-Ng isomorphism theorem for the co-universal algebras.
Let $(G, P)$ be an abelian, lattice ordered group and let $X$ be a compactly aligned product system over $P$. We show that the C*-envelope of the Nica tensor algebra $mathcal{N}mathcal{T}^+_X$ coincides with both Sehnems covariance algebra $mathcal{A} times_X P$ and the co-universal C*-algebra $mathcal{N}mathcal{O}^r_X$ for injective, gauge compatible, Nica-covariant representations of Carlsen, Larsen, Sims and Vittadello. We give several applications of this result on both the selfadjoint and non-selfadjoint operator algebra theory. First we guarantee the existence of $mathcal{N}mathcal{O}^r_X$, thus settling a problem of Carlsen, Larsen, Sims and Vittadello which was open even for abelian, lattice ordered groups. As a second application, we resolve a problem posed by Skalski and Zacharias on dilating isometric representations of product systems to unitary representations. As a third application we characterize the C*-envelope of the tensor algebra of a finitely aligned higher-rank graph which also holds for topological higher-rank graphs. As a final application we prove reduced Hao-Ng isomorphisms for generalized gauge actions of discrete groups on C*-algebras of product systems. This generalizes recent results that were obtained by various authors in the case where $(G, P) =(mathbb{Z},mathbb{N})$.
Let $A$ be a unital operator algebra and let $alpha$ be an automorphism of $A$ that extends to a *-automorphism of its $ca$-envelope $cenv (A)$. In this paper we introduce the isometric semicrossed product $A times_{alpha}^{is} bbZ^+ $ and we show that $cenv(A times_{alpha}^{is} bbZ^+) simeq cenv (A) times_{alpha} bbZ$. In contrast, the $ca$-envelope of the familiar contractive semicrossed product $A times_{alpha} bbZ^+ $ may not equal $cenv (A) times_{alpha} bbZ$. Our main tool for calculating $ca$-envelopes for semicrossed products is the concept of a relative semicrossed product of an operator algebra, which we explore in the more general context of injective endomorphisms. As an application, we extend a recent result of Davidson and Katsoulis to tensor algebras of $ca$-correspondences. We show that if $T_{X}^{+}$ is the tensor algebra of a $ca$-correspondence $(X, fA)$ and $alpha$ a completely isometric automorphism of $T_{X}^{+}$ that fixes the diagonal elementwise, then the contractive semicrossed product satisfies $ cenv(T_{X}^{+} times_{alpha} bbZ^+)simeq O_{X} times_{alpha} bbZ$, where $O_{X}$ denotes the Cuntz-Pimsner algebra of $(X, fA)$.
This paper is an expanded version of the lectures I delivered at the Indian Statistical Institute, Bangalore, during the OTOA 2014 conference.
We introduce P-graphs, which are generalisations of directed graphs in which paths have a degree in a semigroup P rather than a length in N. We focus on semigroups P arising as part of a quasi-lattice ordered group (G,P) in the sense of Nica, and on P-graphs which are finitely aligned in the sense of Raeburn and Sims. We show that each finitely aligned P-graph admits a C*-algebra C*_{min}(Lambda) which is co-universal for partial-isometric representations of Lambda which admit a coaction of G compatible with the P-valued length function. We also characterise when a homomorphism induced by the co-universal property is injective. Our results combined with those of Spielberg show that every Kirchberg algebra is Morita equivalent C*_{min}(Lambda) for some (N^2 * N)-graph Lambda.
Starting from a discrete $C^*$-dynamical system $(mathfrak{A}, theta, omega_o)$, we define and study most of the main ergodic properties of the crossed product $C^*$-dynamical system $(mathfrak{A}rtimes_alphamathbb{Z}, Phi_{theta, u},om_ocirc E)$, $E:mathfrak{A}rtimes_alphamathbb{Z}rightarrowga$ being the canonical conditional expectation of $mathfrak{A}rtimes_alphamathbb{Z}$ onto $mathfrak{A}$, provided $ainaut(ga)$ commute with the $*$-automorphism $th$ up tu a unitary $uinga$. Here, $Phi_{theta, u}inaut(mathfrak{A}rtimes_alphamathbb{Z})$ can be considered as the fully noncommutative generalisation of the celebrated skew-product defined by H. Anzai for the product of two tori in the classical case.