Do you want to publish a course? Click here

Automatic Qubit Characterization and Gate Optimization with QubiC

61   0   0.0 ( 0 )
 Added by Yilun Xu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

As the size and complexity of a quantum computer increases, quantum bit (qubit) characterization and gate optimization become complex and time-consuming tasks. Current calibration techniques require complicated and verbose measurements to tune up qubits and gates, which cannot easily expand to the large-scale quantum systems. We develop a concise and automatic calibration protocol to characterize qubits and optimize gates using QubiC, which is an open source FPGA (field-programmable gate array) based control and measurement system for superconducting quantum information processors. We propose mutli-dimensional loss-based optimization of single-qubit gates and full XY-plane measurement method for the two-qubit CNOT gate calibration. We demonstrate the QubiC automatic calibration protocols are capable of delivering high-fidelity gates on the state-of-the-art transmon-type processor operating at the Advanced Quantum Testbed at Lawrence Berkeley National Laboratory. The single-qubit and two-qubit Clifford gate infidelities measured by randomized benchmarking are of $4.9(1.1) times 10^{-4}$ and $1.4(3) times 10^{-2}$, respectively.



rate research

Read More

The experimental optimization of a two-qubit controlled-Z (CZ) gate is realized following two different data-driven gradient ascent pulse engineering (GRAPE) protocols in the aim of optimizing the gate operator and the output quantum state, respectively. For both GRAPE protocols, the key computation of gradients utilizes mixed information of the input Z-control pulse and the experimental measurement. With an imperfect initial pulse in a flattop waveform, our experimental implementation shows that the CZ gate is quickly improved and the gate fidelities subject to the two optimized pulses are around 99%. Our experimental study confirms the applicability of the data-driven GRAPE protocols in the problem of the gate optimization.
A prototype version of the Q & U Bolometric Interferometer for Cosmology (QUBIC) underwent a campaign of testing in the laboratory at Astroparticle Physics and Cosmology in Paris. We report the results of this Technological Demonstrator which successfully shows the feasibility of the principle of Bolometric Interferometry. Characterization of QUBIC includes the measurement of the synthesized beam, the measurement of interference fringes, and the measurement of polarization performance. A modulated and frequency tunable millimetre-wave source in the telescope far-field is used to simulate a point source. The QUBIC pointing is scanned across the point source to produce beam maps. Polarization modulation is measured using a rotating Half Wave Plate. The measured beam matches well to the theoretical simulations and gives QUBIC the ability to do spectro imaging. The polarization performance is excellent with less than 0.5% cross-polarization rejection. QUBIC is ready for deployment on the high altitude site at Alto Chorillo, Argentina to begin scientific operations.
A proposal for a phase gate and a M{o}lmer-S{o}rensen (MS) gate in the dressed state basis is presented. In order to perform the multi-qubit interaction, a strong magnetic field gradient is required to couple the phonon-bus to the qubit states. The gate is performed using resonant microwave driving fields together with either a radio-frequency (RF) driving field, or additional detuned microwave driving fields. The gate is robust to ambient magnetic field fluctuations due to an applied resonant microwave driving field. Furthermore, the gate is robust to fluctuations in the microwave Rabi frequency and is decoupled from phonon dephasing due to a resonant RF or a detuned microwave driving field. This makes this new gate an attractive candidate for the implementation of high-fidelity microwave based multi-qubit gates. The proposal can also be realized in laser-based set-ups.
203 - M. Pechal , G. Salis , M. Ganzhorn 2020
In circuit-based quantum computing, the available gate set typically consists of single-qubit gates acting on each individual qubit and at least one entangling gate between pairs of qubits. In certain physical architectures, however, some qubits may be hidden and lacking direct addressability through dedicated control and readout lines, for instance because of limited on-chip routing capabilities, or because the number of control lines becomes a limiting factor for many-qubit systems. In this case, no single-qubit operations can be applied to the hidden qubits and their state cannot be measured directly. Instead, they may be controlled and read out only via single-qubit operations on connected control qubits and a suitable set of two-qubit gates. We first discuss the impact of such restricted control capabilities on the quantum volume of specific qubit coupling networks. We then experimentally demonstrate full control and measurement capabilities in a superconducting two-qubit device with local single-qubit control and iSWAP and controlled-phase two-qubit interactions enabled by a tunable coupler. We further introduce an iterative tune-up process required to completely characterize the gate set used for quantum process tomography and evaluate the resulting gate fidelities.
Crosstalk is a leading source of failure in multiqubit quantum information processors. It can arise from a wide range of disparate physical phenomena, and can introduce subtle correlations in the errors experienced by a device. Several hardware characterization protocols are able to detect the presence of crosstalk, but few provide sufficient information to distinguish various crosstalk errors from one another. In this article we describe how gate set tomography, a protocol for detailed characterization of quantum operations, can be used to identify and characterize crosstalk errors in quantum information processors. We demonstrate our methods on a two-qubit trapped-ion processor and a two-qubit subsystem of a superconducting transmon processor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا